
CS221 Problem Workout Solutions
Week 7

1) Problem 1

This problem will give you some practice on computing probabilities given a Markov
network. Specifically, given the Markov network below, we will ask you questions
about the probability distribution p(X1, X2, X3) over the binary random variables
X1, X2, and X3.
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(a) What is p(X1 = 0, X2 = 0, X3 = 0)?

Solution p(X1 = 0, X2 = 0, X3 = 0) = F1(X1=0)F2(X2=0)F3(X1=0,X2=0)F4(X2=0,X3=0)
Z

=
2×0×1×1

Z
= 0, where

Z =
∑

X1∈{0,1}
∑

X2∈{0,1}
∑

X3∈{0,1} F1(X1)F2(X2)F3(X1, X2)F4(X2, X3) = 9

(b) What is p(X1 = 0, X2 = 1, X3 = 0)?

Solution p(X1 = 0, X2 = 1, X3 = 0) = F1(X1=0)F2(X2=1)F3(X1=0,X2=1)F4(X2=1,X3=0)
Z

=
2×1×1×2

Z
= 4

9
, where Z was computed in part a).

(c) What is p(X2 = 0)?

1



Solution p(X2 = 0) = 0

(d) What is p(X3 = 0)?

Solution p(X3 = 0) =
∑

X1∈{0,1}
∑

X2∈{0,1} p(X3=0,X1,X2)

Z
= 6

9
= 2

3
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2) Problem 2 Farmer Kim wants to install a set of sprinklers to water all his crops in
the most cost-effective manner and has hired you as a consultant. Specifically, he has
a rectangular plot of land, which is broken into W × H cells. For each cell (i, j), let
Ci,j ∈ {0, 1} denote whether there are crops in that cell that need watering. In each
cell (i, j), he can either install (Xi,j = 1) or not install (Xi,j = 0) a sprinkler. Each
sprinkler has a range of R, which means that any cell within Manhattan distance of
R gets watered. The maintenance cost of the sprinklers is the sum of the Manhattan
distances from each sprinkler to his home located at (1, 1). Recall that the Manhattan
distance between (a1, b1) and (a2, b2) is |a1 − a2| + |b1 − b2|. Naturally, Farmer Kim
wants the maintenance cost to be as small as possible given that all crops are watered.
See figure below for an example.

Figure 1: An example of a farm with W = 5 and H = 3. Each cell (i, j) is marked ‘C’ if
there are crops there that need watering (Ci,j = 1). An example of a sprinkler installation
is given: a cell (i, j) is marked with ‘S’ if we are placing a sprinkler there (Xi,j = 1). Here,
the sprinkler range is R = 1, and the cells that are shaded are the ones covered by some
sprinkler. In this case, the sprinkler installation is valid (all crops are watered), and the total
maintenance cost is 1 + 4 = 5.

Farmer Kim actually took CS221 years ago, and remembered a few things. He says: “I
think this should be formulated as a factor graph. The variables should be Xi,j ∈ {0, 1}
for each cell (i, j). But here’s where my memory gets foggy. What should the factors
be?” Let X = {Xi,j} denote a full assignment to all variables Xi,j. Your job is to
define two types of factors:

• fi,j: ensures any crops in (i, j) are watered,

• fcost: encodes the maintenance cost,

so that a maximum weight assignment corresponds to a valid sprinkler installation
with minimum maintenance cost.
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fi,j(X) =

[
Ci,j = 0 or

(
min

i′,j′:Xi′,j′=1
|i′ − i|+ |j′ − j|

)
≤ R

]
. (1)

fcost(X) = exp

−
∑

i′,j′:Xi′,j′=1

|i′ − 1|+ |j′ − 1|

 . (2)

(i) [5 points] Recall that Gibbs sampling sets Xi,j = 1 with some probability p. For
convenience, use the notation X ∪ {Xi,j : 1} to denote a modification of X where Xi,j

has been assigned 1 (analogously for 0). Write an expression for p in terms of the
factors (e.g., fcost). Your expression should involve as few factors as possible.

p =

Solution The only factors that depend on Xi,j are fcost and the fi′,j′ of any cells
(i′, j′) within range of R. Let’s multiply only those factors together for a candidate
choice v ∈ {0, 1}:

wv = fcost(X ∪ {Xi,j : v})
∏

i′,j′:|i′−i|+|j′−j′|≤R

fi′,j′(X ∪ {Xi,j : v}). (3)

Then the probability p is just proportional to that:

p =
w1

w1 + w0

. (4)

(ii) [5 points] Recall Gibbs sampling is guaranteed to find the optimal assignment
eventually if there is a non-zero probability of reaching any valid assignment X ′ from
the initial assignment X. Prove that this is the case for any X,X ′.

Solution Note that Gibbs sampling chooses an assignment with probability propor-
tional to its weight, so therefore it cannot choose an assignment with weight 0. We
must show that we can reach any assignment without going through any zero-weight
assignment. The key insight is adding sprinklers to an assignment X with non-zero
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weight cannot make its weight zero (although it can decrease its weight). Take any two
assignments X,X ′ with non-zero weight. We can construct a path through intermedi-
ate assignments with non-zero weight as follows: add sprinklers one by one until all of
them are added, and then remove sprinklers one by one until we obtain X ′. Note that
this is only one such positive probability path, which is probably not the best one, but
it suffices to prove the claim.
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3) Problem 3 Some artists have finished new paintings and are trying to display them.
Luckily, some galleries are looking for new paintings to display. It is your job to match
artists and galleries taking into account the preferences of the artists, the preferences
of the galleries, and the capacity of each gallery.

Here is the formal art gallery matching problem setup:

(a) There are m artists A1, ..., Am who each have a single painting they would like
displayed.

(b) There are n galleries G1, ..., Gn that have space to display paintings.

(c) Each artist Ai specifies arbitrary non-negative preferences PA
(i)
1 , ..., PA

(i)
n ≥ 0 for

each of the n galleries. A large preference value of PA
(i)
j means that artist Ai

really wants their painting to be displayed in gallery Gj, and a preference value
of 0 for PA

(i)
j means that artist Ai does not want their painting to be displayed

in gallery Gj.

(d) Each gallery Gi specifies arbitrary non-negative preferences PG
(i)
1 , ..., PG

(i)
m ≥ 0

for each of the m artists. A large preference value of PG
(i)
j means that gallery Gi

really wants to display artist Aj’s painting, and a preference value of 0 for PG
(i)
j

means that gallery Gi does not want to display artist Aj’s painting

The art gallery matching process has the following requirements:

(a) Each gallery Gi can have a maximum of 1 painting displayed.
(b) Each artist must be matched to exactly one gallery for which they have specified

a positive preference (assume each artist has at least one such preference) and for
which the chosen gallery specifies a positive preference for the artist (assume each
gallery has at least one such preference).

a. (16 points) We can model the art gallery matching process as a CSP.
Our CSP should find the assignment with the maximum weight as determined by the
product of the preference weights of the artists and galleries all together. There are two
possible formulations of this CSP - one with m variables, one for each artist A1, ..., Am,
and one with n variables, one for each gallery G1, ..., Gn.
Finish the specification of this CSP for each of the formulations by stating
the domains of each variable and the factors needed. You may define any no-
tation/helper functions to help you concisely express your answers below.

Formulation 1: Artists as Variables (For this formulation, you should use
only unary and binary factors.)

• Variables (Already given): We have m variables for the artists A1, ..., Am

• Domains (how large is each and what are the values?):
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Solution The domain for each artist is of cardinality n with values G1, ..., Gn

• Factors (Use only unary and binary factors. State the arity of each and
write them as functions from variables to scalars):

Solution There are three sets of factors.

The first set encodes the maximum number of paintings that can be displayed at
each art gallery. Noting that for all pairs of artists, their assigned galleries must
be unique, we can account for this with a set of binary factors for each pair of
artists. For Ai and Aj where i, j ∈ {1, ...,m} and i ̸= j, we have a factor

fi,j(Ai, Aj) = 1[Ai ̸= Aj]

The second set encodes individual artist preferences for where they would like
their paintings displayed. This can be written as unary factors g1, ..., gm where

gi(Ai) = PA
(i)
Ai

which is the preference of the ith artist to have their painting displayed by gallery
Ai (read: value of Ai)

The third set encodes each gallery’s preferences for which artist’s paintings they
would like to display. This can be written as unary factors h1, ..., hn where

hi(Ai) = PG
(Ai)
i

which is the preference of the gallery Ai (read: value of Ai) to have the ith artist’s
painting displayed.

Formulation 2: Galleries as Variables

• Variables (Already given): We have n variables for the galleries G1, ..., Gn

• Domains (how large is each and what are the values?):

Solution The domain for each gallery is of cardinality m+1 with values 0(unassigned), A1, ..., Am

• Factors (state the arity of each and write them as functions from vari-
ables to scalars):
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Solution There are sets of factors.

The first set encodes each gallery’s preferences for which artist’s paintings they
would like to display if they are assigned. This can be written as unary factors
f1, ..., fn where

fi(Gi) = PG
(i)
Gi

∗ 1[Gi ̸= 0] + 1[Gi = 0]

which is the preference of the ith gallery to have the artist Gi’s painting displayed.

The second set encodes the each artist preferences for where they would like their
paintings displayed if a gallery is assigned to them. This can be written as unary
factors g1, ..., gm where

gi(Gi) = PAGi

(i) ∗ 1[Gi ̸= 0] + 1[Gi = 0]

which is the preference of artist Gi to have their painting displayed by gallery i
(read: value of Gi)

The third set encodes that the each gallery must have a unique painting if it is
assigned, as each artist only has one painting. Noting that for all pairs of galleries,
their artists must be unique, we can account for this with a set of binary factors
for each pair of galleries. For Gi and Gj where i, j ∈ {1, ...,m} and i ̸= j, we have
a factor

hi,j(Gi, Gj) = 1[1[Gi ̸= Gj] + 1[Gi = Gj = 0] ̸= 0]

The final set encodes that each artist must be matched to a gallery. We can
encode this as an n-ary factor:

j(G1, ..., Gn) = 1[{A1, ..., Am} ⊆ {G1, ...Gn}]

Note there are several other formulations of the above factors - the above are
examples.

b. (6 points) Imagine a small setting with 3 artists A1, A2, A3 and 3 galleries
G1, G2, G3.
The artist preferences are below:

G1 G2 G3

PA(1) 0 3 0
PA(2) 1 2 4
PA(3) 3 2 1
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The gallery preferences are below:

A1 A2 A3

PG(1) 2 4 0
PG(2) 1 4 5
PG(3) 3 2 1

Assume that we are modeling the problem using the first formulation of the CSP
and are using the artists as variables.
Apply the CSP you designed to this small setting and enforce arc-consistency
amongst its variables. In particular, write out each variable and its final domain
after arc consistency has been enforced. For example, if you have a variable Xi with a
domain {a, b, c}, after enforcing arc-consistency, you should write Xi : {a, b, c}

Solution A1 : {G2} A2 : {G1} A3 : {G3}
Also accepted because of lack of clarification that gallery preferences for the artist
assigned must be non-zero (although accounting for preferences as a factor implicitly
handles this and makes the first case the only legal one.) A1 : {G2} A2 : {G1, G3}
A3 : {G1, G3}

c. (4 points) We will now return to the generalized version of the art gallery
matching problem using the first formulation.

Circle all of the options below that would be applicable techniques for our art gallery
matching CSP if we want a solution that is guaranteed to be the maximum weight
solution.

• Least Constrained Value

• Most Constrained Variable

• Iterated Conditional Modes

• Backtracking Search

Solution Most constrained variable and backtracking search should be circled.
Least constrained value: Not useful - we use LCV when all factors are constraints,
which does not hold since we have a factor that encodes preferences.
Most constrained value: Not useful - does not exist.
Most constrained variable: Useful - we use MCV when some factors are constraints,
which holds true in this formulation CSP since we have a binary constraint to ensure
that the galleries where an artist’s painting is displayed must be unique.
Iterated conditional Modes: Not useful - ICM doesn’t guarantee finding an optimal
solution.
Backtracking search: Useful - Backtracking search does guarantee finding an optimal
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solution.

True/False: If we use beam search with different beam sizes k to solve our Art galleries
CSP, our solution’s assignment weight will always increase as we increase the beam size
k. Justification:

Solution False. Consider going from k = 1 (greedy) to k = 2. The greedy solution
might be the globally optimal assignment, but when k = 2 we may find more partially
optimal solutions as we expand more paths that cause us to drop the greedy solution
from our beam. We are only guaranteed a global optimum with an unbounded beam
size. A common mistake was to state that the weight will never decrease or the weight
will stay the same. This is actually not true even though intuitively it seems like it
should be!
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