
CS221 Problem Workout Solutions
Week 8

1) [CA session] Problem 1: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to
your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate.
You decide to prepare candy bags using the following process.

• For each candy bag, you first flip a (biased) coin Y which comes up heads (Y = H)
with probability λ and tails (Y = T) with probability 1− λ.

• If Y comes up heads (Y = H), you make a Healthy bag, where you:

(a) Add one Apple candy with probability p1 or nothing with probability 1− p1;
(b) Add one Banana candy with probability p1 or nothing with probability 1−p1;
(c) Add one Caramel candy with probability 1− p1 or nothing with probability

p1;
(d) Add one Dark-Chocolate candy with probability 1−p1 or nothing with prob-

ability p1.

• If Y comes up tails (Y = T), you make a Tasty bag, where you:

(a) Add one Apple candy with probability p2 or nothing with probability 1− p2;
(b) Add one Banana candy with probability p2 or nothing with probability 1−p2;
(c) Add one Caramel candy with probability 1− p2 or nothing with probability

p2;
(d) Add one Dark-Chocolate candy with probability 1−p2 or nothing with prob-

ability p2.

For example, if p1 = 1 and p2 = 0, you would deterministically generate: Healthy
bags with one Apple and one Banana; and Tasty bags with one Caramel and one
Dark-Chocolate. For general values of p1 and p2, bags can contain anywhere between
0 and 4 pieces of candy.

Denote A,B,C,D random variables indicating whether or not the bag contains candy
of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.
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Figure 1: Bayesian network for a single candy bag.

a. (1 point)
(i) Draw the Bayesian network corresponding to process of creating a single bag.

Solution Solution for part (i) is shown in Figure 1.
(ii) What is the probability of generating a Healthy bag containing Apple, Banana,
Caramel, and not Dark-Chocolate? For compactness, we will use the following notation
to denote this possible outcome:

(Healthy, {Apple,Banana,Caramel}).

Solution By definition, we create a Healthy bag with probability λ, and include the
candies with probability p1p1(1− p1)p1, so the result is

λp1p1(1− p1)p1

(iii) What is the probability of generating a bag containing Apple, Banana, Caramel,
and not Dark-Chocolate?

Solution The bag could be Healthy or Tasty. We have computed the probability
for the Healthy case above. For a Tasty one, a similar computation gives

(1− λ)p2p2(1− p2)p2

so the result is:
λp1p1(1− p1)p1 + (1− λ)p2p2(1− p2)p2

(iv) What is the probability that a bag was a Tasty one, given that it contains Apple,
Banana, Caramel, and not Dark-Chocolate?

Solution Using the definition of conditional probability, we get:
(1− λ)p2p2(1− p2)p2

λp1p1(1− p1)p1 + (1− λ)p2p2(1− p2)p2
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b. (1 point)

You realize you need to make more candy bags, but you’ve forgotten the probabilities
you used to generate them. So you try to estimate them looking at the 5 bags you’ve
already made:

bag 1 : (Healthy, {Apple,Banana})
bag 2 : (Tasty, {Caramel,Dark-Chocolate})
bag 3 : (Healthy, {Apple,Banana})
bag 4 : (Tasty, {Caramel,Dark-Chocolate})
bag 5 : (Healthy, {Apple,Banana})

Estimate λ, p1, p2 by maximum likelihood.

Solution Out of 5 bags, 3 are Healthy, so λ = 3/5. To estimate p1, we only consider
the 3 healthy bags. For a Healthy bag, the probability of adding Apple,Banana, not
Caramel, and not Dark-Chocolateis (p1)4. For the three bags, the probability becomes
(p1)

12, which is maximized for p1 = 1. Equivalently, to generate 3 Healthy bags, we flip
a (biased) coin of parameter p1 12 times. Since we observe 12 “heads”, the maximum
likelihood estimate is p1 = 1. To generate 2 Tasty bags, we flip a (biased) coin of
parameter p2 8 times. Since we observe 0 “heads”, the maximum likelihood estimate is
p2 = 0.

•
λ = 3/5

•
p1 = 12/12 = 1

•
p2 = 0/8 = 0

Estimate λ, p1, p2 by maximum likelihood, using Laplace smoothing with parameter 1.

Solution We just need to increment the counts in the previous solution by 1.

•
λ = 4/7

•
p1 = 13/(13 + 1)

•
p2 = 1/(1 + 9)
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c. (1 point) You find out your little brother had been playing with your
candy bags, and had mixed them up (in a uniformly random way). Now you don’t even
know which ones were Healthy and which ones were Tasty. So you need to re-estimate
λ, p1, p2, but now without knowing whether the bags were Healthy or Tasty.

bag 1 : (? , {Apple,Banana,Caramel})
bag 2 : (? , {Caramel,Dark-Chocolate})
bag 3 : (? , {Apple,Banana,Caramel})
bag 4 : (? , {Caramel,Dark-Chocolate})
bag 5 : (? , {Apple,Banana,Caramel})

You remember the EM algorithm is just what you need. Initialize with λ = 0.5, p1 =
0.5, p2 = 0, and run one step of the EM algorithm.

(i) E-step:

Solution To evaluate P (Y = T | {A,B,C}) we plug in the parameter values in the
formula in (a),(iv), obtaining P (Y = T | {A,B,C}) = 0. To evaluate P (Y = T |
{C,D}) we use a similar formula obtaining

P (Y = T | {C,D}) = (1− λ)(1− p2)
4

λ(1− p1)4 + (1− λ)(1− p2)4
=

16

17

The resulting weighted dataset is:

• (Healthy, {A,B,C}), 1× 3

• (Tasty, {A,B,C}), 0
• (Healthy, {C,D}), 1/17× 2

• (Tasty, {C,D}), 16/17× 2

(ii) M-step:

Solution Now we just do counts like in part (b). There are 3 + 2/17 Healthy bags
out of 5. For p1, each (Healthy, {A,B,C}) corresponds to 3 “heads” and 1 ”tail”
(probability p1p1(1−p1)p1). Each (Healthy, {C,D}) corresponds to 4 “tails” ((1−p1)

4).
For p2, each (Tasty, {C,D}) corresponds to 4 “tails” ((1− p2)

4). The new parameters
are:

λ = (3 + 2/17)/5

p1 = 9/(9 + 3 + 4 ∗ 2/17)
p2 = 0
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d. (1 point)

You decide to make candy bags according to a new process. You create the first one as
described above. Then with probability µ, you create a second bag of the same type as
the first one (Healthy or Tasty), and of different type with probability 1−µ. Given this
type, the bag is filled with candy as before. Then with probability µ, you create a third
bag of the same type as the second one (Healthy or Tasty), and of different type with
probability 1−µ. And so on, you repeat the process M times. Denote Yi, Ai, Bi, Ci, Di

the variables at each time step, for i = 0, . . . ,M . Let Xi = (Ai, Bi, Ci, Di).

Now you want to compute:

P(Yi = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0))

exactly for all i = 0, . . . ,M , and you decide to use the forward-backward algorithm.

Suppose you have already computed the marginals:

fi = P(Yi = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0))

for some i ≥ 0. Recall the first step of the algorithm is to compute an intermediate
result proportional to

P(Yi+1 | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

(i) Write an expression that is proportional to

P(Yi+1 = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of fi and the parameters p1, p2, λ, µ.

Solution Emission: When Yi+1 = Healthy, the probability of observing Xi+1 =
(1, 1, 1, 0) is p1p1(1− p1)p1 as in part (a),(ii).
Transition: There are two cases: either Yi = Healthy, in which case we transit to
Yi+1 = Healthy with probability µ, or Yi = Tasty, in which case we transit to Yi+1 =
Healthy with probability 1− µ.

∝ ((1− fi)(1− µ) + fiµ)p1p1(1− p1)p1
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(ii) Write an expression that is proportional to

P(Yi+1 = Tasty | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of fi and the parameters of the model p1, p2, λ, µ. The proportionality constant
should be the same as in (i).

Solution (Similar to the previous question)
Emission: When Yi+1 = Tasty, the probability of observing Xi+1 = (1, 1, 1, 0) is
p2p2(1− p2)p2.
Transition: There are two cases: either Yi = Healthy, in which case we transit to
Yi+1 = Tasty with probability 1 − µ, or Yi = Tasty, in which case we transit to
Yi+1 = Tasty with probability µ.

∝ ((fi)(1− µ) + (1− fi)µ)p2p2(1− p2)p2

(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

P(Yi+1 = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of h, t and the parameters of the model p1, p2, λ, µ.

Solution Since h and t have same proportionality constant, we get the true value of
the probability by normalization:

h/(h+ t)

2) Problem 2

You are the president of the small nation of Inferencia, and you have been charged
with choosing which of your country’s two rival soccer teams - the Bayesians or the
Markovians - should represent Inferencia at the upcoming Olympics. You’d like to send
whichever team is more popular, so you decide to model the monthly evolution of the
two teams’ fanbases during the months leading up to the Olympics using a dynamic
Bayesian network.

Let Bt denote the number of fans that the Bayesians have in month t, and let Mt

denote the number of fans that the Markovians have in month t. You have no way of
observing these quantities directly, but you can observe two other quantities which they
influence: let Jt denote the number of jerseys sold by the Bayesians in month t, and
let At denote the attendance of the monthly exhibition game between the Bayesians
and the Markovians in month t.

The fanbases of the two teams evolve according to the following model, where each
month a fan is either gained or lost with equal probability:
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Pr(Mt+1|Mt) =


1
2

if Mt+1 = Mt − 1
1
2

if Mt+1 = Mt + 1

0 otherwise
Pr(Bt+1|Bt) =


1
2

if Bt+1 = Bt − 1
1
2

if Bt+1 = Bt + 1

0 otherwise

The Bayesian fans are big spenders - almost every fan buys a jersey each month! We
model the fanbase size’s influence on jersey sales by:

Pr(Jt|Bt) =



0.3 if Jt = Bt

0.25 if Jt = Bt − 1

0.2 if Jt = Bt − 2

0.15 if Jt = Bt − 3

0.1 if Jt = Bt − 4

0 otherwise

Lastly, because most fans attend each monthly exhibition (although sometimes more,
and sometimes fewer), we model the influence of the fanbase sizes on the exhibition
attendance by:

Pr(At|Bt,Mt) =



0.14 if At = Bt +Mt

0.13 if |At − (Bt +Mt)| = 1

0.11 if |At − (Bt +Mt)| = 2

0.09 if |At − (Bt +Mt)| = 3

0.06 if |At − (Bt +Mt)| = 4

0.04 if |At − (Bt +Mt)| = 5

0 otherwise
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Figure 2: The changing fanbases process modeled as a dynamic Bayesian network. The
unshaded nodes correspond to the latent/hidden fanbase counts, and the shaded nodes cor-
respond to the observable emissions.
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Note that the assumptions and inferences made in individual parts (i.e. (a), (b), etc.)
of this problem do not carry over from one to the next; the only assumptions you may
make in a given part are those which are explicitly stated in that part’s description.

e. (6 points) (Conditional) Independences

Mark each of the following as True or False.

(i) [1 point] Bt ⊥⊥ Jt+1

Solution False

(ii) [1 point] Bt ⊥⊥ Jt+1 | Bt+1

Solution True

(iii) [1 point] Bt ⊥⊥ Mt

Solution True

(iv) [1 point] Bt ⊥⊥ Mt | At

Solution False

(v) [1 point] At ⊥⊥ Mt+1

Solution False

(vi) [1 point] At ⊥⊥ Mt+1 | Mt

Solution True
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f. (10 points) Inference

Suppose the Bayesian’s manager took a nationwide poll in month t that concluded
they had exactly 75 fans. Suppose additionally that in month t+2, the Bayesians sell
73 jerseys. What is the probability that in month t+ 2 the Bayesians have 77 fans?

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =

Solution By Bayes rule, we have:

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =
Pr(Jt+2 = 73|Bt = 75, Bt+2 = 77)Pr(Bt+2 = 77|Bt = 75)

Pr(Jt+2 = 73|Bt = 75)

We’ll begin with the first term in the numerator; because Jt+2 is conditionally inde-
pendent of Bt given Bt+2, we have Pr(Jt+2 = 73|Bt = 75, Bt+2 = 77) = Pr(Jt+2 =
73|Bt+2 = 77). This is simply given by our jersey sales model; the probability that the
Bayesians sell four fewer jerseys than they have fans is 0.1.

We turn next to the second term in the numerator; if there are 75 fans in month t,
then with equal probability there are either 74 or 76 fans in month t + 1. If there
were 74 in month t+ 1, then there would be either 73 or 75 in month t+ 2 with equal
probability, and if there were 76 in month t + 1, then there would be either 75 or 77
in month t + 2 with equal probability. Thus, we have that Pr(Bt+2 = 73|Bt = 75) =
Pr(Bt+2 = 77|Bt = 75) = 0.25, and Pr(Bt+2 = 75|Bt = 75) = 0.5.

Now, to compute the denominator, we simply sum the expression in the numerator
across all possible values for Bt+2:

Pr(Jt+2 = 73|Bt = 75) =
∑
x

Pr(Jt+2 = 73|Bt = 75, Bt+2 = x)Pr(Bt+2 = x|Bt = 75)

Following the same reasoning as we used for the numerator, this evaluates to:

= 0.25·Pr(Jt+2 = 73|Bt+2 = 73)+0.5·Pr(Jt+2 = 73|Bt+2 = 75)+0.25·Pr(Jt+2 = 73|Bt+2 = 77)

= 0.25 · 0.3 + 0.5 · 0.2 + 0.25 · 0.1 = 0.075 + 0.1 + 0.025 = 0.2

So altogether, we have:

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =
0.1 · 0.25

0.2
=

1

2
· 1
4
=

1

8
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g. (4 points) Gibbs Sampling

Inference is exhausting; you decide that you’d be satisfied with simply being able to
draw samples from distributions rather than specifying them exactly. In particular,
you want to sample joint assignments to the variables {Bt,Mt, At, Jt}Tt=1 for some time
horizon T . You decide to implement Gibbs sampling for this purpose, but something’s
not right! What additional information, beyond what we’ve given you, would allow
you to perform Gibbs sampling? Briefly explain.

Solution (The following argument applies identically to Mt as well as Bt): In order
to sample Bt, we need to have first assigned a value to Bt−1; but in order to have
sampled a value for Bt−1, we need to have first assigned a value to Bt−2, and so on.
Continuing in this way, we realize that we must have a way of assigning a value to B1

in order to perform Gibbs sampling. But to do this, we would either need to specify a
fixed value for B1, or specify a prior distribution Pr(B1) from which to sample.
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h. (12 points) Exact Filtering

You now want to begin making inferences as to the sizes of the teams’ fanbases given
only observations of attendances and jersey sales. Recall that exact inference of this
kind in dynamic Bayesian networks can be achieved using a dynamic programming
approach - for example, in the context of Hidden Markov Models, we used the forward-
backward algorithm to do filtering and smoothing.

Give recursive expressions for the following filtering queries. Leave your expressions in
terms of known probabilities.

(i) [4 points] Let’s start by making inferences based only on observed jersey sales.
Denote Ft(bt) = Pr(Bt = bt|J1 = j1, . . . , Jt = jt). Give a recursive expression for Ft(bt)
assuming that you’ve already computed Ft−1(bt−1) for all bt−1.

Solution This is exactly the “forward” computation in an HMM. We can compute the
unnormalized quantity, which we’ll denote F̃t(bt), using the standard forward update:

F̃t(bt) =
∑
bt−1

Ft−1(bt−1) · Pr(Bt = bt|Bt−1 = bt−1) · Pr(Jt = jt|Bt = bt)

and can subsequently produce the required probability by normalizing:

Ft(bt) =
F̃t(bt)∑
b′t
F̃t(b′t)

(ii) [8 points] Let’s bring in the observed attendances as well! Now, denote

Ft(bt,mt) = Pr(Bt = bt,Mt = mt|J1 = j1, . . . , Jt = jt, A1 = a1, . . . , At = at).
Give a recursive expression for Ft(bt,mt) assuming that you’ve already computed
Ft−1(bt−1,mt−1) for all bt−1 and all mt−1.

Solution This closely mirrors the “forward” computation in an HMM, but now we
must account for the dynamics of both hidden states, as well as the probabilities of
both observed emissions. We can compute the unnormalized quantity, which we’ll
denote F̃t(bt,mt), using the following forward update:

F̃t(bt,mt) =

∑
bt−1,mt−1

Ft−1(bt−1,mt−1) · Pr(Bt = bt|Bt−1 = bt−1) · Pr(Mt = mt|Mt−1 = mt−1)·

Pr(Jt = jt|Bt = bt) · Pr(At = at|Bt = bt,Mt = mt)

12



and can subsequently produce the required probability by normalizing:

Ft(bt,mt) =
F̃t(bt,mt)∑

b′t,m
′
t
F̃t(b′t,m

′
t)
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i. (10 points) Particle Filtering

Throughout this problem, you are free to leave quantities in terms of unevaluated
expressions (i.e. you may write 0.75 · 0.5 instead of 0.375).

Computing all of those terms exactly seems tedious, so you instead decide to employ
particle filtering to quickly and painlessly provide you with approximate solutions.
You’re fine with a (very) crude approximation, so you only use two particles.

(i) [2 points] Suppose you begin with the two particles (B1 = 80,M1 = 75) and
(B1 = 82,M1 = 74). You then observe that J1 = 79 and A1 = 154. Compute the
weights that you should assign to the two particles based on this evidence.

Solution For the first particle, we have Pr(A1 = 154|B1 = 80,M1 = 75) = 0.13
and Pr(J1 = 79|B1 = 80) = 0.25. Thus, the first particle should get a weight of
0.13 ∗ 0.25 = 0.0325.

Similarly, for the second particle, we have Pr(A1 = 154|B1 = 82,M1 = 74) = 0.11
and Pr(J1 = 79|B1 = 82) = 0.15. Thus, the second particle should get a weight of
0.11 ∗ 0.15 = 0.0165.

(ii) [2 points] Using these weights, we now resample two new particles. Provide this
sampling distribution.

Probability of sampling a new particle to be (B1 = 80,M1 = 75) =

Solution 0.0325
0.0325+0.0165

Probability of sampling a new particle to be (B1 = 82,M1 = 74) =

Solution 0.0165
0.0325+0.0165
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(iii) [3 points] Suppose both of our new particles are sampled to be (B1 = 80,M1 = 75).
We now extend these particles using our dynamics models. What is the probability
that a particular one of these two particles is extended to:

(B1 = 80,M1 = 75, B2 = 78,M2 = 76)?

Solution Zero. Under the given model for Pr(Bt+1|Bt), the only possible values for
B2 are 79 and 81.

(B1 = 80,M1 = 76, B2 = 79,M2 = 75)?

Solution Zero. The value assigned to M1 cannot change upon extending the particle.

(B1 = 80,M1 = 75, B2 = 79,M2 = 76)?

Solution Pr(B2 = 79|B1 = 80) · Pr(M2 = 76|M1 = 75) = 1
2
· 1
2
= 1

4
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(iv) [3 points] Suppose now that you have access to a large number of particles which
are approximating the distribution over (B1, . . . , Bn,M1, . . . ,Mn). The Olympics are
happening in 6 months, but you have to decide now which team to send so that they
can start preparing! You decide to make predictions of Bn+6 and Mn+6 in order to
send whichever team you predict to be more popular during the month in which the
Olympics will be held. Explain in a few sentences how you would use your particles
for making this decision.

Solution Propagate each particle through the two dynamics models six times in order
to sample values of Bn+1, . . . , Bn+6 and Mn+1 . . . ,Mn+6 for each particle. Compute the
average values of Bn+6 and Mn+6 across all of the particles, and send whichever team
has the larger average value.
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