
CS221 Problem Session
Final Review

1) Problem 1: Inferencia

You are the president of the small nation of Inferencia, and you have been charged
with choosing which of your country’s two rival soccer teams - the Bayesians or the
Markovians - should represent Inferencia at the upcoming Olympics. You’d like to send
whichever team is more popular, so you decide to model the monthly evolution of the
two teams’ fanbases during the months leading up to the Olympics using a dynamic
Bayesian network.

Let Bt denote the number of fans that the Bayesians have in month t, and let Mt

denote the number of fans that the Markovians have in month t. You have no way of
observing these quantities directly, but you can observe two other quantities which they
influence: let Jt denote the number of jerseys sold by the Bayesians in month t, and
let At denote the attendance of the monthly exhibition game between the Bayesians
and the Markovians in month t.

The fanbases of the two teams evolve according to the following model, where each
month a fan is either gained or lost with equal probability:

Pr(Mt+1|Mt) =


1
2

if Mt+1 = Mt − 1
1
2

if Mt+1 = Mt + 1

0 otherwise

Pr(Bt+1|Bt) =


1
2

if Bt+1 = Bt − 1
1
2

if Bt+1 = Bt + 1

0 otherwise

The Bayesian fans are big spenders - almost every fan buys a jersey each month! We
model the fanbase size’s influence on jersey sales by:

Pr(Jt|Bt) =



0.3 if Jt = Bt

0.25 if Jt = Bt − 1

0.2 if Jt = Bt − 2

0.15 if Jt = Bt − 3

0.1 if Jt = Bt − 4

0 otherwise

Lastly, because most fans attend each monthly exhibition (although sometimes more,
and sometimes fewer), we model the influence of the fanbase sizes on the exhibition
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attendance by:

Pr(At|Bt,Mt) =



0.14 if At = Bt +Mt

0.13 if |At − (Bt +Mt)| = 1

0.11 if |At − (Bt +Mt)| = 2

0.09 if |At − (Bt +Mt)| = 3

0.06 if |At − (Bt +Mt)| = 4

0.04 if |At − (Bt +Mt)| = 5

0 otherwise

Note that the assumptions and inferences made in individual parts (i.e. (a), (b), etc.)
of this problem do not carry over from one to the next; the only assumptions you may
make in a given part are those which are explicitly stated in that part’s description.

(a) Model the changing fanbases as a Bayesian network. You should create 8 nodes:
Bt, Bt+1, Mt, Mt+1, At, At+1, Jt, and Jt+1. Indicate which nodes correspond to
latent/hidden fanbase counts and which correspond to the observable emissions.

Mt−1

Bt−1

Mt+2

Bt+2
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(b) Domain Consistencies

As a first step, we will not concern ourselves with which fanbase counts are prob-
able, but instead which counts are even possible. Suppose that we observe, in our
first month of collecting data, that J1 = 75 and A1 = 100. Give the domains for
M1 and B1 that are consistent with these observations. You need only give the
consistent domains (using either set notation or inequality notation).

(c) Inference

Suppose the Bayesian’s manager took a nationwide poll in month t that concluded
they had exactly 75 fans. Suppose additionally that in month t+2, the Bayesians
sell 73 jerseys. What is the probability that in month t+2 the Bayesians have 77
fans?

i. What is the probability that in month t+ 1 the Bayesians sell 72 jerseys?

Pr(Jt+1 = 72|Bt = 75) =

ii. What is the probability that in month t+ 2 that the Bayesians have 77 fans
given that that they had 75 in month t and sold 73 jerseys in month t+ 2?

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =
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(d) Gibbs Sampling

Inference is exhausting; you decide that you’d be satisfied with simply being able
to draw samples from distributions rather than specifying them exactly. In par-
ticular, you want to sample joint assignments to the variables {Bt,Mt, At, Jt}Tt=1

for some time horizon T . You decide to implement Gibbs sampling for this pur-
pose, but something’s not right! What additional information, beyond what we’ve
given you, would allow you to perform Gibbs sampling? Briefly explain.

(e) Exact Filtering

You now want to begin making inferences as to the sizes of the teams’ fanbases
given only observations of attendances and jersey sales. Recall that exact inference
of this kind in dynamic Bayesian networks can be achieved using a dynamic
programming approach - for example, in the context of Hidden Markov Models,
we used the forward-backward algorithm to do filtering and smoothing.

Give recursive expressions for the following filtering queries. Leave your expres-
sions in terms of known probabilities.

i. Let’s start by making inferences based only on observed jersey sales. Denote
Ft(bt) = Pr(Bt = bt|J1 = j1, . . . , Jt = jt). Give a recursive expression for
Ft(bt) assuming that you’ve already computed Ft−1(bt−1) for all bt−1.
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ii. Let’s bring in the observed attendances as well! Now, denote
Ft(bt,mt) = Pr(Bt = bt,Mt = mt|J1 = j1, . . . , Jt = jt, A1 = a1, . . . , At =
at). Give a recursive expression for Ft(bt,mt) assuming that you’ve already
computed Ft−1(bt−1,mt−1) for all bt−1 and all mt−1.

(f) Particle Filtering

Throughout this problem, you are free to leave quantities in terms of unevaluated
expressions (i.e. you may write 0.75 · 0.5 instead of 0.375).

Computing all of those terms exactly seems tedious, so you instead decide to
employ particle filtering to quickly and painlessly provide you with approximate
solutions. You’re fine with a (very) crude approximation, so you only use two
particles.

i. Suppose you begin with the two particles (B1 = 80,M1 = 75) and (B1 =
82,M1 = 74). You then observe that J1 = 79 and A1 = 154. Compute the
weights that you should assign to the two particles based on this evidence.

ii. Using these weights, we now resample two new particles. Provide this sam-
pling distribution.
Probability of sampling a new particle to be (B1 = 80,M1 = 75) =
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Probability of sampling a new particle to be (B1 = 82,M1 = 74) =

iii. Suppose both of our new particles are sampled to be (B1 = 80,M1 = 75).
We now extend these particles using our dynamics models. What is the
probability that a particular one of these two particles is extended to:
(B1 = 80,M1 = 75, B2 = 78,M2 = 76)?

(B1 = 80,M1 = 76, B2 = 79,M2 = 75)?

(B1 = 80,M1 = 75, B2 = 79,M2 = 76)?
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iv. Suppose now that you have access to a large number of particles which are
approximating the distribution over (B1, . . . , Bn,M1, . . . ,Mn). The Olympics
are happening in 6 months, but you have to decide now which team to send
so that they can start preparing! You decide to make predictions of Bn+6 and
Mn+6 in order to send whichever team you predict to be more popular during
the month in which the Olympics will be held. Explain in a few sentences
how you would use your particles for making this decision.
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2) PS9 Problem 4: Knowledge Base

Imagine we are building a knowledge base of propositions in first order logic and want
to make inferences based on what we know. We will deal with a simple setting, where
we only have three objects in the world: Alice, Carol, and Bob. Our predicates are as
follows:

• Employee(x): x is an employee.

• Boss(x): x is a boss.

• Works(x): x works.

• Paid(x): x gets paid.

The knowledge base we have constructed consists of the following propositions:

(a) Boss(Carol)

(b) Employee(Bob)

(c) Paid(Carol) ∧ Works(Carol)

(d) Paid(Alice)

(e) ∀x (Employee(x) ↔ ¬ Boss(x))

(f) ∀x (Employee(x) → Works(x))

(g) ∀x ((Paid(x) ∧ ¬ Works(x)) → Boss(x))

(a) We know from class that one technique we can use to perform inference with
our knowledge base is to propositionalize the statements of first-order logic into
statements of propositional logic. Practice this by propositionalizing statement
(6) from our knowledge base.

(b) If we translated the statement ”Anyone who is not a boss either works or does
not get paid” into first-order logic and added it to our knowledge base, how would
the size of the set of valid models representing our knowledge base change, and
why?
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(c) Using only our original knowledge base (not including the statement from part
(b)), we want to answer the question ”Does everyone work?” We first translate
the sentence ”everyone works” into first order logic as statement f . Determine
the answer to our query by considering the following questions of satisfiability:

1○ Is KB ∪ ¬f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.

x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

2○ Is KB ∪ f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.

x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

3○ Based on your answers to the previous two parts, does our knowledge base
entail f , contradict f , or is f contingent? And what should the answer to
our original question ”Does everyone work?” be?

9



3) Problem 3: CA Assignment (Winter 21, Problem 1)

Every quarter, the Stanford computer science department assigns graduate students as
course assistants (CAs). Students who wish to serve as CAs fill out an application in
which they can list the classes they’d like to CA for. After the application due date, the
department matches applicants to courses, taking into account student preferences as
well as how many course assistants each class needs. Here’s the formal CA-assignment
problem setup:

• There are n students S1, . . . , Sn who apply for CAships.

• There are m courses C1, . . . , Cm that have CA openings.

• Each student Si specifies arbitrary non-negative preferences P
(i)
1 , . . . , P

(i)
m ≥ 0 for

each of the m classes. A large preference value P
(i)
j means student Si really wants

to CA for class Cj, and a preference value of 0 for P
(i)
j means student Si does not

want to CA for class Cj.

The CA-matching process must adhere to the following requirements:

• Each course Ci can have a maximum of Mi course assistants.

• Every student must be matched to exactly one class for which they have specified
a positive preference (assume each student has at least one such preference).

Model the CA-matching process with a CSP with n variables, one for each student
S1, . . . , Sn. Our CSP should find the maximum weight assignment, where the weights
are determined by student preferences.

(a) What is the domain of each variable and what is the cardinality?

(b) What are the factors? State the arity of each.
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(c) We imagine a small setting of this problem for 3 students S1, S2, S3 and 3 courses
C1, C2, C3. The student preferences are given by the following table:

C1 C2 C3

S1 3 0 0
S2 2 1 3
S3 5 3 0

Additionally, classes C1 and C2 can have a maximum of 1 CA each, and class C3

can have at most 2 CAs.

Apply the CSP you designed to this small setting and enforce arc-consistency
amongst its variables. In particular, write out each variable and its domain after
arc-consistency has been enforced. For example, if you have a variable Xi with a
domain {a, b, c} after enforcing arc-consistency, you should write

Xi : {a, b, c}

(d) True or False, with justification.

i. The least constrained value (LCV) heuristic would be a useful optimization
for our CA-assignment CSP.

ii. The most constrained variable (MCV) heuristic would be a useful optimzation
for our CA-assignment CSP.
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iii. If we use the ICM algorithm to solve our CA-assignment CSP, everytime
we modify a single variable assignment our factor recomputation will be on
the order of n (recall that n is the number of students applying for a CA
assignment).

iv. If we use beam search with different beam sizes k to solve our CA-assignment
CSP, our solution’s assignment weight will always increase as we increase the
beam size k.

(e) Explain how you would modify your CSP from part a. to allow for the possibility
that some students aren’t matched to a course. You should encode the (realistic)
assumption that not receiving a CAship is the least-preferable assignment for the
student. (Note that students can still give a preference of 0 for a class if they do
not want to be a CA for that class, and your modification should not prohibit
this.)
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