
CS221 Problem Session Solutions
Final Review

1) Problem 1: Inferencia

You are the president of the small nation of Inferencia, and you have been charged
with choosing which of your country’s two rival soccer teams - the Bayesians or the
Markovians - should represent Inferencia at the upcoming Olympics. You’d like to send
whichever team is more popular, so you decide to model the monthly evolution of the
two teams’ fanbases during the months leading up to the Olympics using a dynamic
Bayesian network.

Let Bt denote the number of fans that the Bayesians have in month t, and let Mt

denote the number of fans that the Markovians have in month t. You have no way of
observing these quantities directly, but you can observe two other quantities which they
influence: let Jt denote the number of jerseys sold by the Bayesians in month t, and
let At denote the attendance of the monthly exhibition game between the Bayesians
and the Markovians in month t.

The fanbases of the two teams evolve according to the following model, where each
month a fan is either gained or lost with equal probability:

Pr(Mt+1|Mt) =


1
2

if Mt+1 = Mt − 1
1
2

if Mt+1 = Mt + 1

0 otherwise

Pr(Bt+1|Bt) =


1
2

if Bt+1 = Bt − 1
1
2

if Bt+1 = Bt + 1

0 otherwise

The Bayesian fans are big spenders - almost every fan buys a jersey each month! We
model the fanbase size’s influence on jersey sales by:

Pr(Jt|Bt) =



0.3 if Jt = Bt

0.25 if Jt = Bt − 1

0.2 if Jt = Bt − 2

0.15 if Jt = Bt − 3

0.1 if Jt = Bt − 4

0 otherwise

Lastly, because most fans attend each monthly exhibition (although sometimes more,
and sometimes fewer), we model the influence of the fanbase sizes on the exhibition
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attendance by:

Pr(At|Bt,Mt) =



0.14 if At = Bt +Mt

0.13 if |At − (Bt +Mt)| = 1

0.11 if |At − (Bt +Mt)| = 2

0.09 if |At − (Bt +Mt)| = 3

0.06 if |At − (Bt +Mt)| = 4

0.04 if |At − (Bt +Mt)| = 5

0 otherwise

Note that the assumptions and inferences made in individual parts (i.e. (a), (b), etc.)
of this problem do not carry over from one to the next; the only assumptions you may
make in a given part are those which are explicitly stated in that part’s description.

(a) Model the changing fanbases as a Bayesian network. You should create 8 nodes:
Bt, Bt+1, Mt, Mt+1, At, At+1, Jt, and Jt+1. Indicate which nodes correspond to
latent/hidden fanbase counts and which correspond to the observable emissions.

Mt−1

Bt−1

Mt+2

Bt+2
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Solution

Mt−1

Bt−1

Mt+2

Bt+2

Mt

Bt

Mt+1

Bt+1

At

Jt

At+1

Jt+1

The changing fanbases process modeled as a dynamic Bayesian network. The
unshaded nodes correspond to the latent/hidden fanbase counts, and the shaded
nodes correspond to the observable emissions.

(b) Domain Consistencies

As a first step, we will not concern ourselves with which fanbase counts are prob-
able, but instead which counts are even possible. Suppose that we observe, in our
first month of collecting data, that J1 = 75 and A1 = 100. Give the domains for
M1 and B1 that are consistent with these observations. You need only give the
consistent domains (using either set notation or inequality notation).

Solution The only values of B1 which are consistent (i.e. yield nonzero proba-
bility under Pr(J1|B1)) with J1 = 75 are B1 ∈ {75, 76, 77, 78, 79}.
Now, we can use this reduced domain for B1 together with the fact that A1 =
100 to reason about the domain of M1. To yield nonzero probability under
Pr(A1|B1,M1), we must have:

|A1 − (B1 +M1)| = |100− (B1 +M1)| ≤ 5

And to satisfy this inequality, we must have:

95 ≤ B1 +M1 ≤ 105

If B1 = 75, we see that 20 ≤ M1 ≤ 30. Because M1 is largest when B1 is smallest,
this gives an upper bound of 30 on the domain of M1. Similarly, if B1 = 79, we
see that 16 ≤ M1 ≤ 26. Because M1 is smallest when B1 is largest, this gives a
lower bound of 16 on the domain of M1. Thus, we conclude that 16 ≤ M1 ≤ 30.

(c) Inference
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Suppose the Bayesian’s manager took a nationwide poll in month t that concluded
they had exactly 75 fans. Suppose additionally that in month t+2, the Bayesians
sell 73 jerseys. What is the probability that in month t+2 the Bayesians have 77
fans?

i. What is the probability that in month t+ 1 the Bayesians sell 72 jerseys?

Pr(Jt+1 = 72|Bt = 75) =

Solution Marginalizing out Bt+1 gives:

Pr(Jt+1 = 72|Bt = 75) =
∑
x

Pr(Jt+1 = 72|Bt+1 = x)Pr(Bt+1 = x|Bt = 75)

Given that Bt = 75, we know that Bt+1 equals either 74 or 76 with equal
probability. Plugging this in to the above expression gives:

Pr(Jt+1 = 72|Bt = 75) = 0.5·Pr(Jt+1 = 72|Bt+1 = 74)+0.5·Pr(Jt+1 = 72|Bt+1 = 76)

And lastly, appealing to our model for jersey counts yields the expression:

Pr(Jt+1 = 72|Bt = 75) = 0.5 · 0.2 + 0.5 · 0.1 = 0.5 · 0.3 = 0.15

ii. What is the probability that in month t+ 2 that the Bayesians have 77 fans
given that that they had 75 in month t and sold 73 jerseys in month t+ 2?

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =

Solution By Bayes rule, we have:

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =

Pr(Jt+2 = 73|Bt = 75, Bt+2 = 77)Pr(Bt+2 = 77|Bt = 75)

Pr(Jt+2 = 73|Bt = 75)

We’ll begin with the first term in the numerator; because Jt+2 is conditionally
independent of Bt given Bt+2, we have Pr(Jt+2 = 73|Bt = 75, Bt+2 = 77) =
Pr(Jt+2 = 73|Bt+2 = 77). This is simply given by our jersey sales model; the
probability that the Bayesians sell four fewer jerseys than they have fans is
0.1.
We turn next to the second term in the numerator; if there are 75 fans in
month t, then with equal probability there are either 74 or 76 fans in month
t+ 1. If there were 74 in month t+ 1, then there would be either 73 or 75 in
month t+2 with equal probability, and if there were 76 in month t+1, then
there would be either 75 or 77 in month t + 2 with equal probability. Thus,
we have that Pr(Bt+2 = 73|Bt = 75) = Pr(Bt+2 = 77|Bt = 75) = 0.25, and
Pr(Bt+2 = 75|Bt = 75) = 0.5.
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Now, to compute the denominator, we simply sum the expression in the
numerator across all possible values for Bt+2:

Pr(Jt+2 = 73|Bt = 75) =
∑
x

Pr(Jt+2 = 73|Bt = 75, Bt+2 = x)Pr(Bt+2 = x|Bt = 75)

Following the same reasoning as we used for the numerator, this evaluates to:

Pr(Jt+2 = 73|Bt = 75) =0.25 · Pr(Jt+2 = 73|Bt+2 = 73)

+ 0.5 · Pr(Jt+2 = 73|Bt+2 = 75)

+ 0.25 · Pr(Jt+2 = 73|Bt+2 = 77)

=0.25 · 0.3 + 0.5 · 0.2 + 0.25 · 0.1 = 0.075 + 0.1 + 0.025

=0.2

So altogether, we have:

Pr(Bt+2 = 77|Bt = 75, Jt+2 = 73) =
0.1 · 0.25

0.2
=

1

2
· 1
4
=

1

8

(d) Gibbs Sampling

Inference is exhausting; you decide that you’d be satisfied with simply being able
to draw samples from distributions rather than specifying them exactly. In par-
ticular, you want to sample joint assignments to the variables {Bt,Mt, At, Jt}Tt=1

for some time horizon T . You decide to implement Gibbs sampling for this pur-
pose, but something’s not right! What additional information, beyond what we’ve
given you, would allow you to perform Gibbs sampling? Briefly explain.

Solution (The following argument applies identically to Mt as well as Bt): In
order to sample Bt, we need to have first assigned a value to Bt−1; but in order to
have sampled a value for Bt−1, we need to have first assigned a value to Bt−2, and
so on. Continuing in this way, we realize that we must have a way of assigning a
value to B1 in order to perform Gibbs sampling. But to do this, we would either
need to specify a fixed value for B1, or specify a prior distribution Pr(B1) from
which to sample.

(e) Exact Filtering

You now want to begin making inferences as to the sizes of the teams’ fanbases
given only observations of attendances and jersey sales. Recall that exact inference
of this kind in dynamic Bayesian networks can be achieved using a dynamic
programming approach - for example, in the context of Hidden Markov Models,
we used the forward-backward algorithm to do filtering and smoothing.

Give recursive expressions for the following filtering queries. Leave your expres-
sions in terms of known probabilities.

i. Let’s start by making inferences based only on observed jersey sales. Denote
Ft(bt) = Pr(Bt = bt|J1 = j1, . . . , Jt = jt). Give a recursive expression for
Ft(bt) assuming that you’ve already computed Ft−1(bt−1) for all bt−1.
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Solution This is exactly the “forward” computation in an HMM. We can
compute the unnormalized quantity, which we’ll denote F̃t(bt), using the stan-
dard forward update:

F̃t(bt) =
∑
bt−1

Ft−1(bt−1) · Pr(Bt = bt|Bt−1 = bt−1) · Pr(Jt = jt|Bt = bt)

and can subsequently produce the required probability by normalizing:

Ft(bt) =
F̃t(bt)∑
b′t
F̃t(b′t)

ii. Let’s bring in the observed attendances as well! Now, denote
Ft(bt,mt) = Pr(Bt = bt,Mt = mt|J1 = j1, . . . , Jt = jt, A1 = a1, . . . , At =
at). Give a recursive expression for Ft(bt,mt) assuming that you’ve already
computed Ft−1(bt−1,mt−1) for all bt−1 and all mt−1.

Solution This closely mirrors the “forward” computation in an HMM, but
now we must account for the dynamics of both hidden states, as well as the
probabilities of both observed emissions. We can compute the unnormalized
quantity, which we’ll denote F̃t(bt,mt), using the following forward update:

F̃t(bt,mt) =
∑

bt−1,mt−1

Ft−1(bt−1,mt−1) · Pr(Bt = bt|Bt−1 = bt−1)

· Pr(Mt = mt|Mt−1 = mt−1) · Pr(Jt = jt|Bt = bt)

· Pr(At = at|Bt = bt,Mt = mt)

and can subsequently produce the required probability by normalizing:

Ft(bt,mt) =
F̃t(bt,mt)∑

b′t,m
′
t
F̃t(b′t,m

′
t)

(f) Particle Filtering

Throughout this problem, you are free to leave quantities in terms of unevaluated
expressions (i.e. you may write 0.75 · 0.5 instead of 0.375).

Computing all of those terms exactly seems tedious, so you instead decide to
employ particle filtering to quickly and painlessly provide you with approximate
solutions. You’re fine with a (very) crude approximation, so you only use two
particles.

i. Suppose you begin with the two particles (B1 = 80,M1 = 75) and (B1 =
82,M1 = 74). You then observe that J1 = 79 and A1 = 154. Compute the
weights that you should assign to the two particles based on this evidence.
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Solution For the first particle, we have Pr(A1 = 154|B1 = 80,M1 = 75) =
0.13 and Pr(J1 = 79|B1 = 80) = 0.25. Thus, the first particle should get a
weight of 0.13 ∗ 0.25 = 0.0325.
Similarly, for the second particle, we have Pr(A1 = 154|B1 = 82,M1 = 74) =
0.11 and Pr(J1 = 79|B1 = 82) = 0.15. Thus, the second particle should get a
weight of 0.11 ∗ 0.15 = 0.0165.

ii. Using these weights, we now resample two new particles. Provide this sam-
pling distribution.
Probability of sampling a new particle to be (B1 = 80,M1 = 75) =

Solution 0.0325
0.0325+0.0165

Probability of sampling a new particle to be (B1 = 82,M1 = 74) =

Solution 0.0165
0.0325+0.0165

iii. Suppose both of our new particles are sampled to be (B1 = 80,M1 = 75).
We now extend these particles using our dynamics models. What is the
probability that a particular one of these two particles is extended to:
(B1 = 80,M1 = 75, B2 = 78,M2 = 76)?

Solution Zero. Under the given model for Pr(Bt+1|Bt), the only possible
values for B2 are 79 and 81.

(B1 = 80,M1 = 76, B2 = 79,M2 = 75)?

Solution Zero. The value assigned to M1 cannot change upon extending
the particle.

(B1 = 80,M1 = 75, B2 = 79,M2 = 76)?

Solution Pr(B2 = 79|B1 = 80) · Pr(M2 = 76|M1 = 75) = 1
2
· 1
2
= 1

4

iv. Suppose now that you have access to a large number of particles which are
approximating the distribution over (B1, . . . , Bn,M1, . . . ,Mn). The Olympics
are happening in 6 months, but you have to decide now which team to send
so that they can start preparing! You decide to make predictions of Bn+6 and
Mn+6 in order to send whichever team you predict to be more popular during
the month in which the Olympics will be held. Explain in a few sentences
how you would use your particles for making this decision.

Solution Propagate each particle through the two dynamics models six
times in order to sample values of Bn+1, . . . , Bn+6 and Mn+1 . . . ,Mn+6 for
each particle. Compute the average values of Bn+6 and Mn+6 across all of the
particles, and send whichever team has the larger average value.
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2) PS9 Problem 4: Knowledge Base

Imagine we are building a knowledge base of propositions in first order logic and want
to make inferences based on what we know. We will deal with a simple setting, where
we only have three objects in the world: Alice, Carol, and Bob. Our predicates are as
follows:

• Employee(x): x is an employee.

• Boss(x): x is a boss.

• Works(x): x works.

• Paid(x): x gets paid.

The knowledge base we have constructed consists of the following propositions:

(a) Boss(Carol)

(b) Employee(Bob)

(c) Paid(Carol) ∧ Works(Carol)

(d) Paid(Alice)

(e) ∀x (Employee(x) ↔ ¬ Boss(x))

(f) ∀x (Employee(x) → Works(x))

(g) ∀x ((Paid(x) ∧ ¬ Works(x)) → Boss(x))

(a) We know from class that one technique we can use to perform inference with
our knowledge base is to propositionalize the statements of first-order logic into
statements of propositional logic. Practice this by propositionalizing statement
(6) from our knowledge base.

Solution (EmployeeAlice → WorksAlice) ∧ (EmployeeBob → WorksBob) ∧
(EmployeeCarol → WorksCarol)

(b) If we translated the statement ”Anyone who is not a boss either works or does
not get paid” into first-order logic and added it to our knowledge base, how would
the size of the set of valid models representing our knowledge base change, and
why?

Solution The set of valid would stay the same as the statement is entailed by
our current knowledge base.

(c) Using only our original knowledge base (not including the statement from part
(b)), we want to answer the question ”Does everyone work?” We first translate
the sentence ”everyone works” into first order logic as statement f . Determine
the answer to our query by considering the following questions of satisfiability:

1○ Is KB ∪ ¬f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.
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x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

Solution Yes
x Employee(x) Boss(x) Works(x) Paid(x)

Alice F T F T
Bob T F T T or F
Carol F T T T

2○ Is KB ∪ f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.

x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

Solution Yes
x Employee(x) Boss(x) Works(x) Paid(x)

Alice T or F Opposite T T
Bob T F T T or F
Carol F T T T

3○ Based on your answers to the previous two parts, does our knowledge base
entail f , contradict f , or is f contingent? And what should the answer to
our original question ”Does everyone work?” be?

Solution f is contingent. Answer should be ”maybe” or ”it depends”

9



3) Problem 3: CA Assignment (Winter 21, Problem 1)

Every quarter, the Stanford computer science department assigns graduate students as
course assistants (CAs). Students who wish to serve as CAs fill out an application in
which they can list the classes they’d like to CA for. After the application due date, the
department matches applicants to courses, taking into account student preferences as
well as how many course assistants each class needs. Here’s the formal CA-assignment
problem setup:

• There are n students S1, . . . , Sn who apply for CAships.

• There are m courses C1, . . . , Cm that have CA openings.

• Each student Si specifies arbitrary non-negative preferences P
(i)
1 , . . . , P

(i)
m ≥ 0 for

each of the m classes. A large preference value P
(i)
j means student Si really wants

to CA for class Cj, and a preference value of 0 for P
(i)
j means student Si does not

want to CA for class Cj.

The CA-matching process must adhere to the following requirements:

• Each course Ci can have a maximum of Mi course assistants.

• Every student must be matched to exactly one class for which they have specified
a positive preference (assume each student has at least one such preference).

Model the CA-matching process with a CSP with n variables, one for each student
S1, . . . , Sn. Our CSP should find the maximum weight assignment, where the weights
are determined by student preferences.

(a) What is the domain of each variable and what is the cardinality?

Solution The domain for each student is of cardinalitym with values {C1, . . . , Cm}.

(b) What are the factors? State the arity of each.

Solution We have 2 sets of factors. The first group encodes the maximum CA
openings for each course. This can be written as n-ary factors f1, . . . , fm, where

fj (S1, . . . , Sn) =

[
n∑

i=1

[Si = Cj] ≤ Mj

]

The second set encodes individual student preferences for which class they’d like
to CA. These are unary factors g1, . . . , gn, where

gi (Si) = P
(i)
Si

which is the preference of the i th student to CA for class Si.
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(c) We imagine a small setting of this problem for 3 students S1, S2, S3 and 3 courses
C1, C2, C3. The student preferences are given by the following table:

C1 C2 C3

S1 3 0 0
S2 2 1 3
S3 5 3 0

Additionally, classes C1 and C2 can have a maximum of 1 CA each, and class C3

can have at most 2 CAs.

Apply the CSP you designed to this small setting and enforce arc-consistency
amongst its variables. In particular, write out each variable and its domain after
arc-consistency has been enforced. For example, if you have a variable Xi with a
domain {a, b, c} after enforcing arc-consistency, you should write

Xi : {a, b, c}

Solution

S1 : {C1}
S2 : {C3}
S3 : {C2}

(d) True or False, with justification.

i. The least constrained value (LCV) heuristic would be a useful optimization
for our CA-assignment CSP.

Solution False. LCV is a useful optimization when all of our factors are
constraints. Since student preferences are arbitrary non-negative values, we
need to try all of the consistent values anyway.

ii. The most constrained variable (MCV) heuristic would be a useful optimzation
for our CA-assignment CSP.

Solution True. MCV is a useful optimization when some of our factors are
constraints. Since we have constraints for the maximum number of CAs for
a particular class, MCV can help.

iii. If we use the ICM algorithm to solve our CA-assignment CSP, everytime
we modify a single variable assignment our factor recomputation will be on
the order of n (recall that n is the number of students applying for a CA
assignment).
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Solution True. While in general for ICM we only need to compute factors
involving the single variable whose assignment we changed, the constraints
on the maximum number of classes (which depends on all n variables) will
need to be recomputed.

iv. If we use beam search with different beam sizes k to solve our CA-assignment
CSP, our solution’s assignment weight will always increase as we increase the
beam size k.

Solution False. Consider going from k = 1 (greedy) to k = 2. The greedy
solution might be the globally optimal assignment, but when k = 2 we may
find more partially optimal solutions as we expand more paths that cause us
to drop the greedy solution from our beam. We are only guaranteed a global
optimum with an unbounded beam size.

(e) Explain how you would modify your CSP from part a. to allow for the possibility
that some students aren’t matched to a course. You should encode the (realistic)
assumption that not receiving a CAship is the least-preferable assignment for the
student. (Note that students can still give a preference of 0 for a class if they do
not want to be a CA for that class, and your modification should not prohibit
this.)

Solution Solution A simple way to do this is to extend the domain for each
student to include a non-assignment value, which we can denote ∅. We can then
augment the unary factors that encode student preferences to output a positive
value for ∅ that is smaller then all of the student’s positive preferences.
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