
CS221 Midterm Review Problem Set Solutions
Week 5

Note that this is only a subset of topics covered so far in the course. Make sure you still
study the lecture material, previous problem sessions (week 4 is great for MDPs which are
not covered here), and use the released back exams to your advantage.

1) “The fear of loss [functions] is a path to the dark side.” - Yoda

(a) We have a trained linear regression model fw(x) = w · ϕ(x). In your own words,
explain why we call this model linear. Is it linear in x? Linear in ϕ(x)? Linear in
w? Note that linearity means that g(x+ y) = g(x) + g(y) and g(αx) = αg(x) for
all α.

Solution Linear regression models are linear both in ϕ(x) and w, but not in x.
A simple example of this is using ϕ(x) = [1, x, x2, x3], which can be used to fit
cubic polynomials.

(b) We are working with a classification model fw(x) = sign(w · ϕ(x)). What is the
decision boundary? What does w ·ϕ(x)y = −1000 mean? How about w ·ϕ(x)y =
0.1? You consider using the loss function

1[(w · ϕ(x))y ≤ 0]

for gradient descent. Explain why this is a bad idea.

Solution The decision boundary is w·ϕ(x) = 0. In the first case we are confident
(w · ϕ(x) is large, far from decision boundary) but incorrect (sign is wrong). In
the second case we are not very confident (near the decision boundary with 0.1)
but at least the sign is correct and the point will be correctly classified. This loss
has zero gradient almost everywhere!

(c) After solving the prior problem you realize zero-one loss is bad and decide to use
logistic loss. Your data is y ∈ {0,+1} so you define the logistic loss:

L(x, y;w) = −y log(f(x;w))− (1− y) log(1− f(x;w)) (1)

where f has a range of [0, 1]. Before picking f , you’d like to differentiate L with
respect to w. Is this possible, and if so, what is ∂L

∂w
?

Solution Yes! We use the chain rule:

∂L(x, y;w)

∂w
= −y

1

f(x;w)

∂f(x;w)

∂w
+ (1− y)

1

1− f(x;w)

∂f(x;w)

∂w

=

(
f(x;w)− y

f(x;w)(1− f(x;w))

)
∂f(x;w)

∂w
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(d) You can’t decide between using the sigmoid function,

g(x;w) =
1

1 + e−wT x

and a shifted tanh function,

h(x;w) =
1

2
tanh(wTx) +

1

2
with tanh(x) =

ex − e−x

ex + e−x

in your loss in place of f . Compute the loss from Equation 1 using g for f and
then h for f .

Solution To make things easier for ourselves, we can first compute ∂g
∂w

and ∂h
∂w

and substitute those into ∂f
∂w

in our solution from (c). Thus

∂g(x;w)

∂w
= −(1 + e−wT x)−2 ∂

∂w

(
1 + e−wT x

)
=

xe−wT x

(1 + e−wT x)2
(this is a valid answer)

= x
1

(1 + e−wT x)

e−wT x

(1 + e−wT x)

= xg(x;w)(1− g(x;w))

and

∂h(x;w)

∂w
=

1

2

∂ tanh(wTx)

∂w

=
1

2

∂

∂w

(ew
T x − e−wT x)

(ewT x + e−wT x)

=
1

2

[
(ew

T x + e−wT x)

(ewT x + e−wT x)
− (ew

T x + e−wT x)2

(ewT x + e−wT x)2

]
x

=
1

2
(1− tanh(wTx)2)x

and we can plug these into our solution from (c). For sigmoid g:

∂L(x, y;w)

∂w
=

(
g(x;w)− y

g(x;w)(1− g(x;w))

)
∂g(x;w)

∂w

=

(
g(x;w)− y

g(x;w)(1− g(x;w))

)
g(x;w)(1− g(x;w))x

= x(g(x;w)− y)
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which looks surprisingly similar to the gradient of squared error loss. For tanh h:

∂L(x, y;w)

∂w
=

(
h(x;w)− y

h(x;w)(1− h(x;w))

)
∂h(x;w)

∂w

=

(
h(x;w)− y

1
2
(tanh(wTx) + 1)(1− 1

2
(tanh(wTx) + 1))

)
1

2
(1− tanh(wTx)2)x

=

(
h(x;w)− y

(tanh(wTx) + 1)1
2
(1− tanh(wTx))

)
(1− tanh(wTx)2)x

= 2x(h(x;w)− y)

isn’t that neat!

(e) Assume you were able to format ∂L(x,y;w)
∂w

as cx(f(x;w)− y) in the previous prob-
lem, where c is a constant and f is the corresponding sigmoid g or tanh h. (if
you couldn’t get it like this, don’t worry, it’s just some algebra). Explain why
this loss function’s gradient is very convenient for backpropagation. Hint: think
about what quantities we compute when evaluating L(x, y;w).

Solution This gradient is convenient because we compute all components of
it during the forward pass (evaluation of L(x, y;w)). The gradient just uses x
(our data), y (our label), and f(x;w) which we have to compute anyways when
we compute the loss. Thus there is no extra computation when backpropagating
other than putting the pieces together.

(f) Unfortunately your model has poor performance for both sigmoid and tanh. You
think that it’s because your model isn’t expressive enough. You decide to make
your model a neural network to hopefully fix that. You decide to keep the loss
function and still use either sigmoid or tanh as your final activation (mostly since
you’ve already differentiated them). Thus rather than plug x directly into your
choice for f , you plug x into a neural network N(x;A,B) = z and then take
f(z;w). Let

N(x;A,B) = Bmax{Ax, 0} = z

And the loss is now:

L(x, y;A,B,w) = −y log(f(N(x;A,B);w))− (1− y) log(1− f(N(x;A,B);w))

You figure you need to do some more differentiating, but you think you can reuse
some things from earlier problems. Can we we reuse our result from (d) for ∂L

∂w
?

Solution Yes, we can reuse our result for ∂L
∂w

, with just a slight change. We
need to replace x with z = N(x;A,B) whenever it appears. Remember we were
differentiating with respect to w so we treated x as a constant. By replacing it
with z = N(x;A,B) we are just redefining a constant, which won’t change the
actual differentiation process.

3



2) “I am the Lorax who speaks for the [game] trees, which you seem to be
[alpha-beta pruning] as fast as you please!” - The Lorax

(a) Evaluate the following game (Figure 1) where the edges are probabilities:

Figure 1

Pretend the top node is now a maximizing player. Under expectimax which action
should they take (left, center, or right) and what is the value of the game.

Solution Bottom row left to right: −1, 0, 3. Overall value is 0.4. Under expec-
timax they would choose the right subtree and get a value of 3.
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(b) Evaluate the game in Figure 2 using the minimax strategies for both players,
with x = −5. Recall that upwards pointing triangles is the maximizing player
and downwards pointing is the minimizing player.

Figure 2

Can we pick x so that the maximizing player loses? Why or why not.

Solution Bottom row of maximizing triangles, left to right: 5,-5,2
Second row of minimizing triangles, left to right: -1,-5,2
Top (value of the game): 2.
No, we cannot max the maximizing player lose by changing x. If x < −5 it is
ignored by its parent maximizer, and if −5 ≤ x < 1 it is chosen by the minimizer
but ignored by the right subtree having a minimax value of 2. If x ≥ 1 then the
1 in the middle subtree will be chosen by the minimizer.

(c) Can either player do better by deviating from minimax assuming the other stays?

Solution No! Proved in the slides. If we could improve by deviating then it
wouldn’t be minimax by definition.

(d) Evaluate the game in Figure 3 under the expectiminimax strategy, using x = −5.
Write down a funny answer for who the third player playing the circles is.

Solution Bottom row of minimizing triangles, left to right: -20, 50, -5, 5, 0, 0
Expected value of middle row of circles, left to right: -6, 0, 0
Expected value of the game (maximizer at the root): 0
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Figure 3

I like to think that the third player playing the randomness in the circles is my
lucky penny I lost in third grade that has been out to get me ever since. (The
point is that the circles follow a known stochastic policy, they aren’t ‘playing’ the
game the same was as the two players are).

(e) In the previous problem, is there a value of x we can choose so that the game
does not end in a draw?

Solution No, making x < −5 would result in decreasing the expected value of
the middle subtree, but the right subtree has an expected value of 0. If we take
x > −5 it’ll be ignored by its parent minimizer.

(f) Assume that in the case of a tie in the value of multiple options, the maximizing
player chooses the rightmost tied-value action. Still referring to (d) and Figure 3
with x = −5, explain, in your own words, why expectiminimax always chooses to
draw the game given this choice of tie-breaking. Is there a better way of breaking
ties?

Solution With x = −5 both the middle subtree and rightmost subtree have
expected value of 0. However in the right subtree the expected value has zero
variance, the game will always draw since both minimizing nodes have value 0.
The middle subtree is averaging −5 and 5 with equal probability, which is an
expected value of 0 as well, but this time with non-zero variance. However, it
isn’t necessarily better to break the tie towards larger variance. We go from
guaranteeing a draw to losing half the time and winning half the time if we take
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the middle subtree, and one isn’t necessarily ‘better’ than the other given the
defined utilities of the game.

(g) Let’s develop some intuition for alpha-beta pruning. Look at the minimax tree in
Figure 4, specifically the left subtree.

Figure 4

Explain why we don’t care about the value of x.

Solution The bottom left minimizing node will choose 7. Then the parent
maximizer to that minimizer will choose at least 7. Going to the second leftmost
minimizer, the first value is a 3, meaning the minimizer will choose at most 3.
Since the maximizer already has access to a 7, it isn’t going to care if the second
minimizing node offers a 3 or something smaller. Thus we don’t care about the
value of x since it won’t change our decision in the left subtree.

(h) To run alpha-beta pruning we:

• Find as, the lower bound on value at max node s.

• Find bs, the upper bound on value at min node s.

• To prune, calculate the following (where s′ ≤ s indicates ancestors):

αs = max
s′≤s

as′ and βs = min
s′≤s

bs′

noting that we are maximizing over lower bounds and minimizing over upper
bounds.

Run alpha-beta pruning on the tree from the previous question, Figure 4.
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Solution Solution:

See we can confirm that we cannot prune anything in the middle subtree since we
would be pruning the optimal value of 5.

(i) You recall learning about Nash Equilibrium and the Prisoner’s Dilemma in lecture,
but you can’t remember exactly what the numbers were. You remember there
were three conditions:

• If both testify, then both are sentenced to a years in jail.

• If both refuse, then both are sentenced to b years in jail.

• If only one testifies, they get 0 years and the other gets c years.

And you remember that a Nash Equilibrium is when no player has incentive to
change their strategy. First, write down the payoff matrix for this game in terms of
a, b, c, and 0. The matrix should look symmetric. Then, write down the conditions
(or just values for a, b, and c) so that both testify is a Nash Equilibrium.

Solution

P1\P2 Testify Refuse
Testify a\a 0\c
Refuse c\0 b\b

Both testify is just regular Prisoner’s Dilemma, so c < a < b < 0. You can verify
this by trying both strategies for one player, and seeing which is in the other
player’s best interest. If P2 testifies, then P1 can testify for a or refuse for c, so
a > c implies testify. If P2 refuses, then P1 can testify for 0 or refuse for b, and if
b < 0 they will testify.
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3) Ikea is a BFS (Big Furniture Store)
Oh no! You’re trapped in an Ikea! Let’s use search to get out. You’re located at
(0, 0) and the exit is at (1, 1). Between you and the exit are a significantly large
number of boxes (denoted bi ∈ B), situated somewhere in the square defined by corners
(0, 0) − (1, 0) − (1, 1) − (0, 1), blocking your path. You can remove boxes that are in
your way, but you’d like to minimize your effort.

For this problem, consider the algorithms: Backtracking, BFS, DFS, DFS-ID, Dynamic
Programming, UCS, and A∗.

Figure 5: Example scenario, with start at bottom left and end at top right.

(a) Let’s formalize this as a search problem:

• sstart =

Solution s0, which just represents our starting position (0, 0).

• IsEnd(s) =

Solution sf , representing our final position (1, 1).

• States S =

Solution {s0 ∪B ∪ sf}
• Actions(s) =

Solution All states reachable from s, meaning {si} such that that you can
get to si from s without going through any boxes.

• Succ(s, a) =
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Solution Since a at a state s are just potential successive actions, Succ(s, a) =
a.

• Cost(s, a) = unknown for now

(b) Consider that the boxes are all empty and you don’t care how many you have
to remove. Write a cost function for this scenario. What algorithm would you
use to find a path to the exit if you only care about how long your algorithm
takes to run? What is the exact worst case length of your path (number of boxes
traversed)? Is it possible for DFS to return the shortest path?

Solution Cost(s, a) = 0 for all state/action pairs. DFS would just go down the
tree until it reaches the end state. Although it won’t necessarily be the shortest
path (it is possible but unlikely), it won’t backtrack through the tree at all since
every path eventually leads to the end state after going through at most |B|
boxes. Note backtracking search wouldn’t necessarily be as fast (in this case)
since it explores all paths and DFS would just follow one path.

(c) After throwing hundreds of tiny little boxes out of your way, you realize you do
in fact care how many boxes you have to remove. Write a cost function for this
scenario. What algorithm would you use to find the shortest path to the exit? If
there are O(b) boxes reachable from each box, and the shortest path is length d,
what is the complexity of this algorithm? What is the memory cost?

Solution Cost(s, a) = c where c is any positive constant. BFS is one option,
with memory cost O(bd) time and memory cost. DFS with iterative deepening is
another option with O(d) memory cost and O(bd) time complexity. Backtracking
technically works but is much slower with O(b|B|) time complexity and O(|B|)
memory cost.

(d) Inside one of the boxes you’ve found a nifty little drone that can fly up, look
at the boxes, and perform a sort of DFS up to a given depth. This means that
given a depth d̃, the drone reports whether there is a path of length at most d̃ or
not (there is no information about a shorter path if one is found). Let’s say you
know there exists a path of length d0 from part (b). You don’t know how long
the battery in your drone is going to last, so to conserve it you’d like to have it
run the algorithm for as few d̃ as possible. What should you do (can be a rough
description of your method) and how many runs will you need at most?

Solution Given that the algorithm only tells us yes/no if a path of depth d̃
exists, we can use binary search on the interval [1, d0−1], starting with ⌊d0−1

2
⌋. If

the algorithm finds a path of that length we recurse at to the middle of the lower
interval, if not we go to the middle of the higher interval and recurse. This leads
to ⌉ log2 d0

⌉ runs of our algorithm.

(e) You’ve come to realize that not all boxes are equally easy to move, and you’d
prefer to move small boxes over large boxes. For simplicity, let’s assume that all
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boxes are equally dense, so the effort to move them is nonzero and proportional
to their area. What is our new cost function? Can we use dynamic programming
to minimize the the effort along our path to the exit? What about UCS? If
|B| → ∞ will UCS work with some restrictions on the problem? If so what are
the restrictions?

Solution The new cost function is Cost(s, a) = ca, where ca is the cost of the
box a. Dynamic programming cannot be used, as the graph contains cycles. UCS
will work, even for infinite boxes, but only if the number of actions is finite.

(f) UCS seems to be taking too long so you decide to give A∗ a try. Your friend
suggests you use distance (either Euclidean/ℓ2 or Manhattan/ℓ1) to the goal as a
heuristic. You can use the center of each box as the ‘location’ of the box. Prove
or disprove that your friend’s heuristic is consistent.

Solution For either distance metric we have one part of the definition of con-
sistency, that h(sf ) = 0. For the other part we need to show that

Cost′(s, a) = Cost(s, a) + h(Succ(s, a))− h(s) ≥ 0

Before we move any further, it’s important to recognize what this formula means.
Our actual cost of action a at s plus the estimated future cost at the next state
needs to be at least the estimated future cost at s. This is just the triangle
inequality. However, let’s say we are at a box with location (1, 0.8) (call this state
s). We can go directly to a box at location (0.5, 1) incurring cost 0.1. We have
then that h(s) = 0.2 and h(Succ(s, a)) = 0.5 (under either distance metric) with
Cost(s, a) = 0.1. This gives a negative adjusted cost! Thus the heuristic is not
consistent. This is because there is no penalty/cost for movement in space, only
moving boxes.

(g) Since distance didn’t work you need a new heuristic. Propose one and prove that
it works.

Solution Let’s try using the shortest length path, ignoring cost, from s to sf as
our heuristic, ignoring the cost at each box. To check if this consistent, we see that
if a brings us closer to the goal (in terms of path length) then h(Succ(s, a)) =
h(s) − 1. The action could bring us to a state equal length path to the goal,
so h(Succ(s, a)) = h(s). Lastly, the action could bring us away from the goal
in terms of path, so we’d need to go back through s on the shortest path, so
h(Succ(s, a)) = h(s) + 1. This means h(Succ(s, a)) − h(s) is either −1, 0, or 1.
This is a problem when h(Succ(s, a))−h(s) = −1, since the heuristic would only be
consistent when Cost(s, a) > 1. To fix this, we can use the fact that Cost(s, a) > 0
and let cmin be the smallest cost box to move. Then we can multiply h by cmin

and get:

Cost(s, a) + h(Succ(s, a))− h(s) ≥ Cost(s, a)− cmin ≥ 0
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And so the heuristic of using the future cost relaxation where we assume all boxes
are the same effort as the smallest box is consistent.
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