1 Key Takeaways from this Week

The goal of ML is to learn a function f parameterized by w s.t. $f_w(x)$ is very close to y. Each algorithm is a triplet of three design decisions:

1. **Hypothesis class** – How will I write down my prediction for y as a function of x? Which parameters w do I need to learn?

2. **Loss function** – How do I measure how far my prediction is from the real y?

3. **Optimization algorithm** – What algorithm will I use to minimize my loss function?

<table>
<thead>
<tr>
<th>$y \in \mathbb{R}$</th>
<th>Linear regression $f_w(x) := w \cdot \phi(x)$</th>
<th>Squared loss: $(f_w(x) - y)^2$</th>
<th>GD or SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \in {-1, 1}$</td>
<td>(Binary) linear classification $f_w(x) := \text{sign}(w \cdot \phi(x))$</td>
<td>0-1 loss: $1[</td>
<td>f_w(x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hinge loss: $\max{1 - (w \cdot \phi(x))y, 0}$</td>
<td>GD or SGD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logistic loss: $\log(1 + e^{-y(w \cdot \phi(x))})$</td>
<td>GD or SGD</td>
</tr>
</tbody>
</table>

Dimension check. Above, $w, \phi(x) \in \mathbb{R}^d$, while y is a scalar.
2 Practice Problems

1) Problem 1: Gradient computation

(i) Let \(\phi(x): \mathbb{R} \rightarrow \mathbb{R}^d, \ w \in \mathbb{R}^d, \) and \(f(x, w) = w \cdot \phi(x) \). Consider the following loss function.

\[
\text{Loss}(x, y, w) = \frac{1}{2} \max \{2 - (w \cdot \phi(x))y, 0\}^2. \tag{1}
\]

Compute its gradient \(\nabla_w \text{Loss}(x, y, w) \).

Solution Note that \(\text{Loss}(x, y, w) \) can be written as the following piecewise defined function using the definition of max.

\[
\text{Loss}(x, y, w) = \begin{cases}
\frac{1}{2}(2 - (w \cdot \phi(x)y))^2 & \text{if } 2 - (w \cdot \phi(x))y \geq 0 \\
0 & \text{otherwise.}
\end{cases} \tag{2}
\]

Using the chain rule, we get that the gradient is:

\[
\nabla_w \text{Loss}(x, y, w) = \begin{cases}
-(2 - w \cdot \phi(x)y)\phi(x)y & \text{if } 2 - w \cdot \phi(x)y \geq 0 \\
0 & \text{otherwise.}
\end{cases} \tag{3}
\]
2) Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.

\[\text{Loss}(x, y, w) = \sigma(-(w \cdot \phi(x))y), \]

where \(\sigma(z) = (1 + \exp(-z))^{-1} \) is the logistic function.

Solution Let \(z = (-w \cdot \phi(x))y \), then \(\text{Loss}(x, y, w) = \sigma(z) = (1 + \exp(-z))^{-1} \).

Applying the chain rule, we get

\[
\nabla_w \text{Loss}(x, y, w) = \frac{\partial \sigma(z)}{\partial z} \nabla_w z
\]

(5)

\[
= -(1 + \exp(-z))^{-2} \exp(-z) y \phi(x)
\]

(6)

\[
= -(1 + \exp(-z))^{-1} \left(\frac{\exp(-z)}{1 + \exp(-z)} \right) y \phi(x)
\]

(7)

\[
= -\sigma(z)(1 - \sigma(z)) y \phi(x).
\]

(8)

Plugging in the expression for \(z \) gives us the final expression.

\[
\nabla_w \text{Loss}(x, y, w) = -\sigma(-(w \cdot \phi(x))y)(1 - \sigma(-(w \cdot \phi(x))y)) y \phi(x).
\]

(9)

(ii) Suppose we have the following loss function.

\[\text{Loss}(x, y, w) = \max\{1 - \lfloor (w \cdot \phi(x))y \rfloor, 0\}, \]

where \(\lfloor a \rfloor \) returns \(a \) rounded down to the nearest integer. Determine what the gradient of this function looks like, and whether gradient descent is suitable to optimize this loss function.

Solution

\[
\text{Loss}(x, y, w) = \begin{cases}
1 - \lfloor (w \cdot \phi(x))y \rfloor & \text{if } \lfloor (w \cdot \phi(x))y \rfloor \leq 1, \\
0 & \text{otherwise}
\end{cases}
\]

(11)

If we draw the plot for the floor function, we can see that its derivative is 0 (the lines are flat and the slope is 0) almost everywhere.
Thus, when applying chain rule to find the gradient of Loss(x, y, w), the computed gradient will also be 0 almost everywhere, so gradient descent is not suitable to optimize this function as the iterates would not move from the point of initialization.
3) Problem 3: Gradient and Gradient Descent

(i) Let \(\phi(x) : \mathbb{R} \mapsto \mathbb{R}^d, \ w \in \mathbb{R}^d \). Consider the following objective function (a.k.a. loss function).

\[
\text{Loss}(x, y, w) = \begin{cases}
1 - 2(w \cdot \phi(x))y & \text{if } (w \cdot \phi(x))y \leq 0 \\
(1 - (w \cdot \phi(x))y)^2 & \text{if } 0 < (w \cdot \phi(x))y \leq 1 \\
0 & \text{if } (w \cdot \phi(x))y > 1,
\end{cases}
\]

where \(y \in \mathbb{R} \). Compute the gradient \(\nabla_w \text{Loss}(x, y, w) \).

Solution We apply the rules to compute the gradient for each case separately, leading to the following piece-wise function for the gradient.

\[
\nabla_w \text{Loss}(x, y, w) = \begin{cases}
-2\phi(x)y & \text{if } (w \cdot \phi(x))y \leq 0 \\
-2(1 - (w \cdot \phi(x))y)\phi(x)y & \text{if } 0 < (w \cdot \phi(x))y \leq 1 \\
0 & \text{if } (w \cdot \phi(x))y > 1
\end{cases}
\] (12)

(ii) Write out the Gradient Descent update rule for some function \(\text{TrainLoss}(w) : \mathbb{R}^d \mapsto \mathbb{R} \).

Solution \(w := w - \eta \nabla_w \text{TrainLoss}(w) \), where \(\eta \) is the step size.

(iii) Let \(d = 2 \) and \(\phi(x) = [1, x] \). Consider the following loss function.

\[
\text{TrainLoss}(w) = \frac{1}{2} \left(\text{Loss}(x_1, y_1, w) + \text{Loss}(x_2, y_2, w) \right).
\] (13)

Compute \(\nabla_w \text{TrainLoss}(w) \) for the following values of \(x_1, y_1, x_2, y_2, w \).

\[
w = \begin{bmatrix} 0, 1 \end{bmatrix},
\]

\[
x_1 = -2, \ y_1 = 1,
x_2 = -1, \ y_2 = -1.
\]

Solution

\[
\nabla_w \text{TrainLoss}(w) = \frac{1}{2} \nabla_w \left(\text{Loss}(x_1, y_1, w) + \text{Loss}(x_2, y_2, w) \right)
\]

\[
= \frac{1}{2} \nabla_w \text{Loss}(x_1, y_1, w) + \frac{1}{2} \nabla_w \text{Loss}(x_2, y_2, w)
\]

For each of the terms above, we plug in the expression for the gradient computed in part (i) above.
Term one. Note that $\phi(x_1) = [1, -2]$. Since $(w \cdot \phi(x_1))y_1 = -1$, we consider the first piece (Case 1) in the gradient expression (Equation 12). We have

$$
\nabla_w \text{Loss}(x_1, y_1, w) = -2\phi(x_1)y_1 = [-2, 4].
$$

(14)

Term two. Note that $\phi(x_2) = [1, -1]$. Similarly, $(w \cdot \phi(x_2))y_2 = \frac{1}{2}$ taking us to Case 2 so

$$
\nabla_w \text{Loss}(x_2, y_2, w) = -2(1 - (w \cdot \phi(x_2))y_2)\phi(x_2)y_2 = [1, -1].
$$

(15)

Combining the terms,

$$
\nabla_w \text{TrainLoss}(w) = \frac{1}{2}([[-2, 4] + [1, -1]])
= \begin{bmatrix}
-1 & 3 \\
-2 & 2
\end{bmatrix}.
$$

(16)

(iv) Perform two iterations of Gradient Descent to minimize the objective function $\text{TrainLoss}(w) = \frac{1}{2} \left(\text{Loss}(x_1, y_1, w) + \text{Loss}(x_2, y_2, w) \right)$ with values for x_1, y_1, x_2, y_2 as above. Use initialization $w^0 = [0, \frac{1}{2}]$ and step size $\eta = \frac{1}{2}$.

Solution Note that we have already computed $\nabla_w \text{TrainLoss}(w)$ at the initialization point w^0 in the question above.

$$
\begin{align*}
\mathbf{w}^1 &= \mathbf{w}^0 - \eta \nabla_w \text{TrainLoss}(w) \text{ at } \mathbf{w}^0 \\
&= \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} - \left(\frac{1}{2} \right) \begin{bmatrix} 1, 3 \end{bmatrix} \\
&= \begin{bmatrix} 1 & -1 \end{bmatrix}.
\end{align*}
$$

From part (iii) above

Now we need to compute $\nabla_w \text{Loss}(x_1, y_1, w)$ and $\nabla_w \text{Loss}(x_2, y_2, w)$ at the new iterate \mathbf{w}^1.

We repeat the process we did for (iii) by applying the piece-wise defined gradient (Equation 12) to the two points, this time setting $\mathbf{w} = \mathbf{w}^1$.

6
Term one. Since \((w^1 \cdot \phi(x_1))y_1 = \frac{3}{4}\), we have \(\nabla_w \text{Loss}(x_1, y_1, w) = -2(1 - (w^1 \cdot \phi(x_1))y_1)\phi(x_1)y_1 = [-\frac{1}{2}, 1]\). Note that we are now in Case 2 with respect to the piecewise definition of the gradient (Equation 12). When computing \(\nabla_w \text{Loss}(x_1, y_1, w)\) at \(w^0\), we were in Case 1.

Term two. \((w^1 \cdot \phi(x_2))y_2 = -\frac{1}{2}\) taking us to Case 1, so \(\nabla_w \text{Loss}(x_2, y_2, w) = -2\phi(x_2)y_2 = [2, -2]\).

Hence,

\[
\begin{align*}
w^2 &= w^1 - \eta \nabla_w \text{TrainLoss}(w) \text{ at } w^1 \\
&= \begin{bmatrix} \frac{1}{4}, -\frac{1}{4} \end{bmatrix} - \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix} + [2, -2] \right) \\
&= \begin{bmatrix} -\frac{1}{8}, 0 \end{bmatrix}.
\end{align*}
\]
4) **Problem 4 (Extra): Vector visualization**

Recall that we can visualize a vector \(\mathbf{w} \in \mathbb{R}^d \) as a point in \(d \)-dimensional space. Let us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider \(\mathbf{x} \in \mathbb{R}^2 \). Draw the line (i.e. the “decision boundary”) that separates between vectors having a positive dot product with weights \(\mathbf{w} = [3, -2] \) and those having a negative dot product. Shade the part of the 2D plane that contains vectors satisfying \(\mathbf{w} \cdot \mathbf{x} > 0 \).

Hint: It might help to write out the expression for the dot product and seeing the relation between \(x_1 \) and \(x_2 \) that leads to a positive dot product. You could also use the geometric interpretation of the dot product.

Solution \(\mathbf{w} \cdot \mathbf{x} = 3x_1 - 2x_2 > 0 \)
(ii) Repeat the above for $w = [2, 0]$ and $w = [0, 2]$.

Solution When $w = [2, 0]$, $w \cdot x = 2x_1 > 0$

When $w = [0, 2]$, $w \cdot x = 2x_2 > 0$
(iii) A small twist: visualize the set of vectors where $w \cdot x \geq 1$ for $w = [3, -2]$.

Solution \[w \cdot x = 3x_1 - 2x_2 \geq 1, \text{ so } 3x_1 - 2x_2 - 1 \geq 0 \]

Note that we get a line that is parallel to the one in (i) but shifted by a certain amount.
(iv) Consider the following element-wise inequality notation. For two vectors \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^d \),

\[
\mathbf{a} \leq \mathbf{b} \iff a_i \leq b_i \quad \forall i = 1, 2, \ldots d.
\] (17)

Suppose we have a matrix \(A \in \mathbb{R}^{2 \times 2} \) and a vector \(\mathbf{b} \in \mathbb{R}^2 \) as follows.

\[
A = \begin{bmatrix} 3 & -2 \\ 2 & 0 \end{bmatrix}, \quad \mathbf{b} = [1, 0].
\] (18)

Visualize the set of vectors where \(A\mathbf{x} \geq \mathbf{b} \). Hint: A matrix vector product is a collection of dot products, and the above set can be obtained by the intersection of two of the sets constructed in the previous questions.

Solution \(A\mathbf{x} = [3x_1 - 2x_2, 2x_1] \geq [1, 0] \), so it’s the intersection of \(3x_1 - 2x_2 \geq 1 \) and \(x_1 \geq 0 \).