
CS221 Problem Workout Solutions
Week 1

1 Key Takeaways from this Week
The goal of ML is to learn a function f parameterized by w s.t. fw(x) is very close to y.
Each algorithm is a triplet of three design decisions:

1. Hypothesis class – How will I write down my prediction for y as a function of x?
Which parameters w do I need to learn?

2. Loss function – How do I measure how far my prediction is from the real y?

3. Optimization algorithm – What algorithm will I use to minimize my loss function?

Hypothesis class Loss function Optimization algorithm

y ∈ R Linear regression fw(x) := w · ϕ(x) Squared loss: (fw(x)− y)2 GD or SGD

y ∈ {−1, 1} (Binary) linear classification fw(x) := sign (w · ϕ(x))
0-1 loss: 1[fw(x) ̸= y] Cannot use GD, SGD

Hinge loss: max{1− (w · ϕ(x))y, 0} GD or SGD

Logistic loss: log
(
1 + e−(w·ϕ(x))y) GD or SGD

Dimension check. Above, w, ϕ(x) ∈ Rd, while y is a scalar.
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2 Practice Problems
1) Problem 1: Gradient computation

(i) Let ϕ(x) : R 7→ Rd, w ∈ Rd, and f(x,w) = w · ϕ(x). Consider the following loss
function.

Loss(x, y,w) =
1

2
max{2− (w · ϕ(x))y, 0}2. (1)

Compute its gradient ∇wLoss(x, y,w).

Solution Note that Loss(x, y,w) can be written as the following piecewise defined
function using the definition of max.

Loss(x, y,w) =

{
1
2
(2− (w · ϕ(x)y))2 if 2− (w · ϕ(x))y ≥ 0

0 otherwise.
(2)

Using the chain rule, we get that the gradient is:

∇wLoss(x, y,w) =

{
−(2−w · ϕ(x)y)ϕ(x)y if 2−w · ϕ(x)y ≥ 0

0 otherwise.
(3)
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2) Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.

Loss(x, y,w) = σ(−(w · ϕ(x))y), (4)

where σ(z) = (1 + exp(−z))−1 is the logistic function.

Solution Let z = (−w · ϕ(x))y, then Loss(x, y,w) = σ(z) = (1 + exp(−z))−1.
Applying the chain rule, we get

∇wLoss(x, y,w) =
∂σ(z)

∂z
∇wz (5)

= −(1 + exp(−z))−2 exp(−z)yϕ(x) (6)

= −(1 + exp(−z))−1
( exp−z

1 + exp(−z)

)
yϕ(x) (7)

= −σ(z)(1− σ(z))yϕ(x). (8)

Plugging in the expression for z gives us the final expression.

∇wLoss(x, y,w) = −σ(−(w · ϕ(x))y)(1− σ(−(w · ϕ(x))y))yϕ(x). (9)

(ii) Suppose we have the following loss function.

Loss(x, y,w) = max{1− ⌊(w · ϕ(x))y⌋, 0}, (10)

where ⌊a⌋ returns a rounded down to the nearest integer. Determine what the gradient
of this function looks like, and whether gradient descent is suitable to optimize this
loss function.

Solution

Loss(x, y,w) =

{
1− ⌊(w · ϕ(x))y⌋ if ⌊(w · ϕ(x))y⌋ ≤ 1,

0 otherwise
(11)

If we draw the plot for the floor function, we can see that its derivative is 0 (the lines
are flat and the slope is 0) almost everywhere.
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Thus, when applying chain rule to find the gradient of Loss(x, y,w), the computed
gradient will also be 0 almost everywhere, so gradient descent is not suitable to optimize
this function as the iterates would not move from the point of initialization.
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3) Problem 3: Gradient and Gradient Descent

(i) Let ϕ(x) : R 7→ Rd, w ∈ Rd. Consider the following objective function (a.k.a.
loss function).

Loss(x, y,w) =


1− 2(w · ϕ(x))y if (w · ϕ(x))y ≤ 0

(1− (w · ϕ(x))y)2 if 0 < (w · ϕ(x))y ≤ 1

0 if (w · ϕ(x))y > 1,

where y ∈ R. Compute the gradient ∇wLoss(x, y,w).

Solution We apply the rules to compute the gradient for each case separately, leading
to the following piece-wise function for the gradient.

∇wLoss(x, y,w) =


−2ϕ(x)y if (w · ϕ(x))y ≤ 0

−2(1− (w · ϕ(x))y)ϕ(x)y if 0 < (w · ϕ(x))y ≤ 1

0 if (w · ϕ(x))y > 1

(12)

(ii) Write out the Gradient Descent update rule for some function TrainLoss(w) : Rd 7→
R.

Solution w := w − η∇wTrainLoss(w), where η is the step size.

(iii) Let d = 2 and ϕ(x) = [1, x]. Consider the following loss function.

TrainLoss(w) =
1

2

(
Loss(x1, y1,w) + Loss(x2, y2,w)

)
. (13)

Compute ∇wTrainLoss(w) for the following values of x1, y1, x2, y2,w.

w =

[
0,

1

2

]
,

x1 = −2, y1 = 1,

x2 = −1, y2 = −1.

Solution

∇wTrainLoss(w) =
1

2
∇w

(
Loss(x1, y1,w) + Loss(x2, y2,w)

)
=

1

2
∇wLoss(x1, y1,w) +

1

2
∇wLoss(x2, y2,w)

For each of the terms above, we plug in the expression for the gradient computed in
part (i) above.
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Term one. Note that ϕ(x1) = [1,−2]. Since (w · ϕ(x1))y1 = −1, we consider the
first piece (Case 1) in the gradient expression (Equation 12). We have

∇wLoss(x1, y1,w) = −2ϕ(x1)y1

= [−2, 4]. (14)

Term two. Note that ϕ(x2) = [1,−1]. Similarly, (w ·ϕ(x2))y2 = 1
2

taking us to Case
2 so

∇wLoss(x2, y2,w) = −2(1− (w · ϕ(x2))y2)ϕ(x2)y2

= [1,−1]. (15)

Combining the terms,

∇wTrainLoss(w) =
1

2

(
[−2, 4] + [1,−1]

)
=

[
−1

2
,
3

2

]
. (16)

(iv) Perform two iterations of Gradient Descent to minimize the objective function
TrainLoss(w) = 1

2

(
Loss(x1, y1, w) + Loss(x2, y2, w)

)
with values for x1, y1, x2, y2 as

above. Use initialization w0 =
[
0, 1

2

]
and step size η = 1

2
.

Solution Note that we have already computed ∇wTrainLoss(w) at the initialization
point w0 in the question above.

w1 = w0 − η∇wTrainLoss(w) at w0

=

[
0,

1

2

]
−
(1
2

) (1
2

)
[−1, 3]︸ ︷︷ ︸

From part (iii) above

=

[
1

4
,−1

4

]
.

Now we need to compute ∇wLoss(x1, y1,w) and ∇wLoss(x2, y2,w) at the new iterate
w1.
We repeat the process we did for (iii) by applying the piece-wise defined gradient
(Equation 12) to the two points, this time setting w = w1.
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Term one. Since (w1 · ϕ(x1))y1 = 3
4
, we have ∇wLoss(x1, y1,w) = −2(1 − (w1 ·

ϕ(x1))y1)ϕ(x1)y1 = [−1
2
, 1]. Note that we are now in Case 2 with respect to the piece-

wise definition of the gradient (Equation 12). When computing ∇wLoss(x1, y1,w) at
w0, we were in Case 1.

Term two. (w1 · ϕ(x2))y2 = −1
2

taking us to Case 1, so ∇wLoss(x2, y2,w) =
−2ϕ(x2)y2 = [2,−2].

Hence,

w2 = w1 − η∇wTrainLoss(w) at w1

=

[
1

4
,−1

4

]
−
(1
2

)(1
2

)([
−1

2
, 1

]
+ [2,−2]

)
=

[
−1

8
, 0

]
.
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4) Problem 4 (Extra): Vector visualization
Recall that we can visualize a vector w ∈ Rd as a point in d-dimensional space. Let
us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider x ∈ R2. Draw the line (i.e. the “decision boundary”) that separates
between vectors having a positive dot product with weights w = [3,−2] and those
having a negative dot product. Shade the part of the 2D plane that contains vectors
satisfying w · x > 0.

Hint: It might help to write out the expression for the dot product and seeing the
relation between x1 and x2 that leads to a positive dot product. You could also use
the geometric interpretation of the dot product.

Solution w · x = 3x1 − 2x2 > 0
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(ii) Repeat the above for w = [2, 0] and w = [0, 2].

Solution When w = [2, 0], w · x = 2x1 > 0

When w = [0, 2], w · x = 2x2 > 0
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(iii) A small twist: visualize the set of vectors where w · x ≥ 1 for w = [3,−2].

Solution w · x = 3x1 − 2x2 ≥ 1, so 3x1 − 2x2 − 1 ≥ 0

Note that we get a line that is parallel to the one in (i) but shifted by a certain amount.
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(iv) Consider the following element-wise inequality notation. For two vectors a,b ∈ Rd,

a ≤ b ⇐⇒ ai ≤ bi ∀i = 1, 2, . . . d. (17)

Suppose we have a matrix A ∈ R2×2 and a vector b ∈ R2 as follows.

A =

[
3 −2
2 0

]
,b = [1, 0]. (18)

Visualize the set of vectors where Ax ≥ b. Hint: A matrix vector product is a collection
of dot products, and the above set can be obtained by the intersection of two of the
sets constructed in the previous questions.

Solution Ax = [3x1 − 2x2, 2x1] ≥ [1, 0], so it’s the intersection of 3x1 − 2x2 ≥ 1 and
x1 ≥ 0
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