CS221 Problem Workout Solutions

Week 1

1 Key Takeaways from this Week

The goal of ML is to learn a function f parameterized by w s.t. $f_{w}(x)$ is very close to y. Each algorithm is a triplet of three design decisions:

1. Hypothesis class - How will I write down my prediction for y as a function of x ? Which parameters w do I need to learn?
2. Loss function - How do I measure how far my prediction is from the real y ?
3. Optimization algorithm - What algorithm will I use to minimize my loss function?

		Hypothesis class	Loss function	Optimization algorithm
$y \in \mathbb{R}$	Linear regression	$f_{w}(x):=w \cdot \phi(x)$	Squared loss: $\left(f_{w}(x)-y\right)^{2}$	GD or SGD
$y \in\{-1,1\}$	(Binary) linear classification	$f_{w}(x):=\operatorname{sign}(w \cdot \phi(x))$	$\frac{0-1 \text { loss: } 1\left[f_{w}(x) \neq y\right]}{}$	Hinge loss: $\max \{1-(w \cdot \phi(x)) y, 0\}$
		Logistic loss: $\log \left(1+e^{-(w \cdot \phi(x)) y}\right)$	GD or SGD	

Dimension check. Above, $w, \phi(x) \in \mathbb{R}^{d}$, while y is a scalar.

2 Practice Problems

1) Problem 1: Gradient computation

(i) Let $\phi(x): \mathbb{R} \mapsto \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}$, and $f(x, \mathbf{w})=\mathbf{w} \cdot \phi(x)$. Consider the following loss function.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\frac{1}{2} \max \{2-(\mathbf{w} \cdot \phi(x)) y, 0\}^{2} \tag{1}
\end{equation*}
$$

Compute its gradient $\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})$.

Solution Note that $\operatorname{Loss}(x, y, w)$ can be written as the following piecewise defined function using the definition of max.

$$
\operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}\frac{1}{2}(2-(\mathbf{w} \cdot \phi(x) y))^{2} & \text { if } 2-(\mathbf{w} \cdot \phi(x)) y \geq 0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Using the chain rule, we get that the gradient is:

$$
\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}-(2-\mathbf{w} \cdot \phi(x) y) \phi(x) y & \text { if } 2-\mathbf{w} \cdot \phi(x) y \geq 0 \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

2) Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\sigma(-(\mathbf{w} \cdot \phi(x)) y) \tag{4}
\end{equation*}
$$

where $\sigma(z)=(1+\exp (-z))^{-1}$ is the logistic function.

Solution Let $z=(-\mathbf{w} \cdot \phi(x)) y$, then $\operatorname{Loss}(x, y, \mathbf{w})=\sigma(z)=(1+\exp (-z))^{-1}$. Applying the chain rule, we get

$$
\begin{align*}
\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w}) & =\frac{\partial \sigma(z)}{\partial z} \nabla_{\mathbf{w}} z \tag{5}\\
& =-(1+\exp (-z))^{-2} \exp (-z) y \phi(x) \tag{6}\\
& =-(1+\exp (-z))^{-1}\left(\frac{\exp -z}{1+\exp (-z)}\right) y \phi(x) \tag{7}\\
& =-\sigma(z)(1-\sigma(z)) y \phi(x) \tag{8}
\end{align*}
$$

Plugging in the expression for z gives us the final expression.

$$
\begin{equation*}
\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})=-\sigma(-(\mathbf{w} \cdot \phi(x)) y)(1-\sigma(-(\mathbf{w} \cdot \phi(x)) y)) y \phi(x) \tag{9}
\end{equation*}
$$

(ii) Suppose we have the following loss function.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\max \{1-\lfloor(\mathbf{w} \cdot \phi(x)) y\rfloor, 0\} \tag{10}
\end{equation*}
$$

where $\lfloor a\rfloor$ returns a rounded down to the nearest integer. Determine what the gradient of this function looks like, and whether gradient descent is suitable to optimize this loss function.

Solution

$$
\operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}1-\lfloor(\mathbf{w} \cdot \phi(x)) y\rfloor & \text { if }\lfloor(\mathbf{w} \cdot \phi(x)) y\rfloor \leq 1 \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

If we draw the plot for the floor function, we can see that its derivative is 0 (the lines are flat and the slope is 0) almost everywhere.

Thus, when applying chain rule to find the gradient of $\operatorname{Loss}(x, y, \mathbf{w})$, the computed gradient will also be 0 almost everywhere, so gradient descent is not suitable to optimize this function as the iterates would not move from the point of initialization.

3) Problem 3: Gradient and Gradient Descent

(i) Let $\phi(x): \mathbb{R} \mapsto \mathbb{R}^{d}$, $\mathbf{w} \in \mathbb{R}^{d}$. Consider the following objective function (a.k.a. loss function).

$$
\operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}1-2(\mathbf{w} \cdot \phi(x)) y & \text { if }(\mathbf{w} \cdot \phi(x)) y \leq 0 \\ (1-(\mathbf{w} \cdot \phi(x)) y)^{2} & \text { if } 0<(\mathbf{w} \cdot \phi(x)) y \leq 1 \\ 0 & \text { if }(\mathbf{w} \cdot \phi(x)) y>1\end{cases}
$$

where $y \in \mathbb{R}$. Compute the gradient $\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})$.

Solution We apply the rules to compute the gradient for each case separately, leading to the following piece-wise function for the gradient.

$$
\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}-2 \phi(x) y & \text { if }(\mathbf{w} \cdot \phi(x)) y \leq 0 \tag{12}\\ -2(1-(\mathbf{w} \cdot \phi(x)) y) \phi(x) y & \text { if } 0<(\mathbf{w} \cdot \phi(x)) y \leq 1 \\ 0 & \text { if }(\mathbf{w} \cdot \phi(x)) y>1\end{cases}
$$

(ii) Write out the Gradient Descent update rule for some function TrainLoss(w) : $\mathbb{R}^{d} \mapsto$ \mathbb{R}.

Solution $\mathbf{w}:=\mathbf{w}-\eta \nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w})$, where η is the step size.
(iii) Let $d=2$ and $\phi(x)=[1, x]$. Consider the following loss function.

$$
\begin{equation*}
\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{2}\left(\operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)+\operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)\right) \tag{13}
\end{equation*}
$$

Compute $\nabla_{w} \operatorname{TrainLoss}(\mathbf{w})$ for the following values of $x_{1}, y_{1}, x_{2}, y_{2}, \mathbf{w}$.

$$
\begin{aligned}
& \quad \mathbf{w}=\left[0, \frac{1}{2}\right], \\
& x_{1}=-2, \quad y_{1}=1, \\
& x_{2}=-1, \quad y_{2}=-1 .
\end{aligned}
$$

Solution

$$
\begin{aligned}
\nabla_{w} \operatorname{TrainLoss}(\mathbf{w}) & =\frac{1}{2} \nabla_{\mathbf{w}}\left(\operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)+\operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)\right) \\
& =\frac{1}{2} \nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)+\frac{1}{2} \nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)
\end{aligned}
$$

For each of the terms above, we plug in the expression for the gradient computed in part (i) above.

Term one. Note that $\phi\left(x_{1}\right)=[1,-2]$. Since $\left(\mathbf{w} \cdot \phi\left(x_{1}\right)\right) y_{1}=-1$, we consider the first piece (Case 1) in the gradient expression (Equation 12). We have

$$
\begin{align*}
\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right) & =-2 \phi\left(x_{1}\right) y_{1} \\
& =[-2,4] . \tag{14}
\end{align*}
$$

Term two. Note that $\phi\left(x_{2}\right)=[1,-1]$. Similarly, $\left(\mathbf{w} \cdot \phi\left(x_{2}\right)\right) y_{2}=\frac{1}{2}$ taking us to Case 2 so

$$
\begin{align*}
\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right) & =-2\left(1-\left(\mathbf{w} \cdot \phi\left(x_{2}\right)\right) y_{2}\right) \phi\left(x_{2}\right) y_{2} \\
& =[1,-1] . \tag{15}
\end{align*}
$$

Combining the terms,

$$
\begin{align*}
\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) & =\frac{1}{2}([-2,4]+[1,-1]) \\
& =\left[-\frac{1}{2}, \frac{3}{2}\right] \tag{16}
\end{align*}
$$

(iv) Perform two iterations of Gradient Descent to minimize the objective function $\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{2}\left(\operatorname{Loss}\left(x_{1}, y_{1}, w\right)+\operatorname{Loss}\left(x_{2}, y_{2}, w\right)\right)$ with values for $x_{1}, y_{1}, x_{2}, y_{2}$ as above. Use initialization $\mathbf{w}^{0}=\left[0, \frac{1}{2}\right]$ and step size $\eta=\frac{1}{2}$.

Solution Note that we have already computed $\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w})$ at the initialization point \mathbf{w}^{0} in the question above.

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\eta \nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) \text { at } \mathbf{w}^{0} \\
& =\left[0, \frac{1}{2}\right]-\left(\frac{1}{2}\right) \underbrace{\left(\frac{1}{2}\right)[-1,3]}_{\text {From part (iii) above }} \\
& =\left[\frac{1}{4},-\frac{1}{4}\right] .
\end{aligned}
$$

Now we need to compute $\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)$ and $\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)$ at the new iterate w^{1}.
We repeat the process we did for (iii) by applying the piece-wise defined gradient (Equation 12) to the two points, this time setting $\mathbf{w}=\mathbf{w}^{1}$.

Term one. Since $\left(\mathbf{w}^{1} \cdot \phi\left(x_{1}\right)\right) y_{1}=\frac{3}{4}$, we have $\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)=-2\left(1-\left(\mathbf{w}^{1}\right.\right.$. $\left.\left.\phi\left(x_{1}\right)\right) y_{1}\right) \phi\left(x_{1}\right) y_{1}=\left[-\frac{1}{2}, 1\right]$. Note that we are now in Case 2 with respect to the piecewise definition of the gradient (Equation 12). When computing $\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)$ at w^{0}, we were in Case 1.

Term two. $\left(\mathbf{w}^{1} \cdot \phi\left(x_{2}\right)\right) y_{2}=-\frac{1}{2}$ taking us to Case 1, so $\nabla_{\mathbf{w}} \operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)=$ $-2 \phi\left(x_{2}\right) y_{2}=[2,-2]$.

Hence,

$$
\begin{aligned}
\mathbf{w}^{2} & =\mathbf{w}^{1}-\eta \nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) \text { at } \mathbf{w}^{1} \\
& =\left[\frac{1}{4},-\frac{1}{4}\right]-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\left[-\frac{1}{2}, 1\right]+[2,-2]\right) \\
& =\left[-\frac{1}{8}, 0\right]
\end{aligned}
$$

4) Problem 4 (Extra): Vector visualization

Recall that we can visualize a vector $\mathbf{w} \in \mathbb{R}^{d}$ as a point in d-dimensional space. Let us now visualize some vectors in 2 dimensions on pen and paper.
(i) Consider $\mathbf{x} \in \mathbb{R}^{2}$. Draw the line (i.e. the "decision boundary") that separates between vectors having a positive dot product with weights $\mathbf{w}=[3,-2]$ and those having a negative dot product. Shade the part of the 2D plane that contains vectors satisfying $\mathbf{w} \cdot \mathbf{x}>0$.
Hint: It might help to write out the expression for the dot product and seeing the relation between x_{1} and x_{2} that leads to a positive dot product. You could also use the geometric interpretation of the dot product.

Solution $\quad \mathbf{w} \cdot \mathbf{x}=3 x_{1}-2 x_{2}>0$

(ii) Repeat the above for $\mathbf{w}=[2,0]$ and $\mathbf{w}=[0,2]$.

Solution When $\mathbf{w}=[2,0], \mathbf{w} \cdot \mathbf{x}=2 x_{1}>0$

When $\mathbf{w}=[0,2], \mathbf{w} \cdot \mathbf{x}=2 x_{2}>0$

(iii) A small twist: visualize the set of vectors where $\mathbf{w} \cdot \mathbf{x} \geq 1$ for $\mathbf{w}=[3,-2]$.

Solution $\quad \mathbf{w} \cdot \mathbf{x}=3 x_{1}-2 x_{2} \geq 1$, so $3 x_{1}-2 x_{2}-1 \geq 0$

Note that we get a line that is parallel to the one in (i) but shifted by a certain amount.
(iv) Consider the following element-wise inequality notation. For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\mathbf{a} \leq \mathbf{b} \Longleftrightarrow a_{i} \leq b_{i} \forall i=1,2, \ldots d \tag{17}
\end{equation*}
$$

Suppose we have a matrix $A \in \mathbb{R}^{2 \times 2}$ and a vector $\mathbf{b} \in \mathbb{R}^{2}$ as follows.

$$
A=\left[\begin{array}{cc}
3 & -2 \tag{18}\\
2 & 0
\end{array}\right], \mathbf{b}=[1,0] .
$$

Visualize the set of vectors where $A \mathbf{x} \geq \mathbf{b}$. Hint: A matrix vector product is a collection of dot products, and the above set can be obtained by the intersection of two of the sets constructed in the previous questions.

Solution $A \mathbf{x}=\left[3 x_{1}-2 x_{2}, 2 x_{1}\right] \geq[1,0]$, so it's the intersection of $3 x_{1}-2 x_{2} \geq 1$ and $x_{1} \geq 0$

