CS221 Problem Workout Solutions

Week 1

1 Key Takeaways from this Week

The goal of ML is to learn a function f parameterized by w s.t. f,(x) is very close to y.
Each algorithm is a triplet of three design decisions:

1. Hypothesis class — How will I write down my prediction for y as a function of x?
Which parameters w do I need to learn?

2. Loss function — How do I measure how far my prediction is from the real y?

3. Optimization algorithm — What algorithm will I use to minimize my loss function?

Hypothesis class Loss function Optimization algorithm
yeR Linear regression Juw(z) == w-¢(z) Squared loss: (fi,(x) —y)? GD or SGD
0-1 loss: 1[fu(z) # Yyl Cannot use GD, SGD

y € {—1,1} (Binary) linear classification f, () := sign (w - ¢(z)) Hinge loss: max{1 — (w - ¢(x))y,0} GD or SGD

Logistic loss: log (1 + e‘(w'¢(m))y) GD or SGD

Dimension check. Above, w, ¢(x) € R, while y is a scalar.



2 Practice Problems

1) Problem 1: Gradient computation

(i) Let ¢(x) : R = R4 w € RY and f(z,w) = w - ¢(z). Consider the following loss
function.

Loss(z,y,w) = %max{Z — (w - ¢(z))y, 0} (1)

Compute its gradient VLoss(z,y, w).

Solution Note that Loss(x,y, w) can be written as the following piecewise defined
function using the definition of max.

52— (W-o(x)y)* if 2— (w-¢(x))y >0
0 otherwise.

Loss(z,y,w) = { (2)

Using the chain rule, we get that the gradient is:

—2-w-o(@)y)p(r)y f2-w-d(x)y>0
0 otherwise.

VwlLoss(z,y,w) = { (3)



2) Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.

Loss(z, y, w) = o/~ (w - 6(2))y). (4)

where o(z) = (1 4+ exp(—=2))~! is the logistic function.

Solution Let z — (—w - ¢(2))y, then Loss(z,y, w) = o(2) = (1 + exp(—z))~".
Applying the chain rule, we get

Vo Loss(z, y, w) = 808(;>sz (5)

= —(1 +exp(—2)) " exp(—2)yd(x) (6)

( (7)

(8)

1+ exp(—@)‘%%)wm
=—0(2)(1 —o(2))yo(x).

Plugging in the expression for z gives us the final expression.

VwLoss(z,y, w) = —o(=(w - ¢(2))y)(1 — o(=(W - d(2))y))yo(z). (9)

(ii) Suppose we have the following loss function.

Loss(z,y, w) = max{l — [(w - ¢(x))y], 0}, (10)

where |a] returns a rounded down to the nearest integer. Determine what the gradient
of this function looks like, and whether gradient descent is suitable to optimize this
loss function.

Solution

L= [(w-ox)y] if [(w-o(x))y] <1,

0 otherwise

Loss(x,y,w) = { (11)

If we draw the plot for the floor function, we can see that its derivative is 0 (the lines
are flat and the slope is 0) almost everywhere.



Thus, when applying chain rule to find the gradient of Loss(z,y, w), the computed
gradient will also be 0 almost everywhere, so gradient descent is not suitable to optimize
this function as the iterates would not move from the point of initialization.



3) Problem 3: Gradient and Gradient Descent

(i) Let ¢(z) : R — R? w € R% Consider the following objective function (a.k.a.
loss function).

1=2(w-o(x))y if (w-¢(z))y <0
Loss(z,y,w) =< (1 — (w-¢(x))y)? if0<(w-o(z))y <1
0 if (w-o(z))y > 1,

where y € R. Compute the gradient V., Loss(z,y, w).

Solution We apply the rules to compute the gradient for each case separately, leading
to the following piece-wise function for the gradient.

—2¢(z)y if (w-¢(z))y <0
VwLoss(z,y, w) = ¢ =2(1 — (W - ¢(2))y)d(z)y 0 < (w-d(x))y<1l  (12)
0 if (w-¢(z))y >1

(ii) Write out the Gradient Descent update rule for some function TrainLoss(w) : R? —
R.

Solution w :=w —nVyTrainLoss(w), where 7 is the step size.

(iii) Let d = 2 and ¢(z) = [1,z]. Consider the following loss function.
1
TrainLoss(w) = 5 (Loss(xl, y1, W) + Loss(za, yo, W)) (13)
Compute V,, TrainLoss(w) for the following values of x1, y1, x2, Y2, W.

1
— 0. =
v=[ra)

xrp = _27 Y1 = 17
To = —]_, Y2 = —1.

Solution
i 1
V. TrainLoss(w) = EVW (Loss(avl7 y1, W) + Loss(z2, ya, W))
1 1
- évaOSS(l‘l? Y1, W) + EVWLOSS(ZE% Y2, W)

For each of the terms above, we plug in the expression for the gradient computed in
part (i) above.



Term one. Note that ¢(x1) = [1, —2]. Since (w - ¢(z1))y1 = —1, we consider the
first piece (Case 1) in the gradient expression (Equation 12). We have

VWLOSS<I’1,y1,W) = —2¢($1)y1
= [-2,4]. (14)

Term two. Note that ¢(22) = [1, —1]. Similarly, (w-¢(z2))y. = 3 taking us to Case
2 s0

VwLoss(7a,y2, W) = —=2(1 — (W - ¢(22))y2) ¢ (72)y2
— 1, —1]. (15)

Combining the terms,

VwTrainLoss(w) = %([—2, 4] +[1, —1])

_ [—% g} | (16)

(iv) Perform two iterations of Gradient Descent to minimize the objective function
TrainLoss(w) = %(Loss(xl,yl,w) + Loss(xg,yg,w)) with values for x1, vy, 2,92 as

above. Use initialization w® = [0, %} and step size n = %

Solution Note that we have already computed V TrainLoss(w) at the initialization
point w’ in the question above.

w! = w’ — nV, TrainLoss(w) at w"

g -@) @

From part (iii) above
N
47 4]

Now we need to compute VyLoss(z, 11, w) and Vi Loss(xa, y2, w) at the new iterate
1

wl.

We repeat the process we did for (iii) by applying the piece-wise defined gradient

(Equation 12) to the two points, this time setting w = w'.




Term one. Since (W' - ¢(z1))y1 = 3, we have VyLoss(z1,y1,w) = —2(1 — (w!-
¢(x1))y1)p(z1)y1 = [—3,1]. Note that we are now in Case 2 with respect to the piece-

wise definition of the gradient (Equation 12). When computing VLoss(xy, 1, w) at

w’, we were in Case 1.

Term two. (w': ¢(zs))y. = —3 taking us to Case 1, so VyLoss(za, 12, W) =

Hence,

w? = w' — nV,, TrainLoss(w) at w'
[ O[] o)
)



4) Problem 4 (Extra): Vector visualization
Recall that we can visualize a vector w € R? as a point in d-dimensional space. Let
us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider x € R?. Draw the line (i.e. the “decision boundary”) that separates
between vectors having a positive dot product with weights w = [3, —2] and those
having a negative dot product. Shade the part of the 2D plane that contains vectors
satisfying w - x > 0.

Hint: It might help to write out the expression for the dot product and seeing the
relation between x; and x5 that leads to a positive dot product. You could also use
the geometric interpretation of the dot product.

Solution w-x=3z; — 229 >0

- ;\\
N

N




(i) Repeat the above for w = [2,0] and w = [0, 2].

Solution When w = [2,0], w-x = 2z; >0

Z

10

When w = [0,2], w - x = 225 > 0

I

—2




(iii) A small twist: visualize the set of vectors where w - x > 1 for w = [3, —2].

Solution w-x=3r; —219>1,803x1 —225—12>0

I -

x

Note that we get a line that is parallel to the one in (i) but shifted by a certain amount.
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(iv) Consider the following element-wise inequality notation. For two vectors a, b € R?,

Suppose we have a matrix A € R?*? and a vector b € R? as follows.

A= B _02] ;b =[1,0]. (18)

Visualize the set of vectors where Ax > b. Hint: A matrix vector product is a collection
of dot products, and the above set can be obtained by the intersection of two of the
sets constructed in the previous questions.

Solution Ax = [3z7 — 219, 221] > [1,0], so it’s the intersection of 327 — 2z5 > 1 and
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