
CS221 Problem Workout Solutions
Week 2

1) Problem 1: Non-linear features

Consider the following two training datasets of (x, y) pairs:

• D1 = {(−1,+1), (0,−1), (1,+1)}.
• D2 = {(−1,−1), (0,+1), (1,−1)}.

Observe that neither dataset is linearly separable if we use ϕ(x) = x, so let’s fix that.

Define a two-dimensional feature function ϕ(x) such that:

• There exists a weight vector w1 that classifies D1 perfectly (meaning that w1 ·
ϕ(x) > 0 if x is labeled +1 and w1 · ϕ(x) < 0 if x is labeled −1); and

• There exists a weight vector w2 that classifies D2 perfectly.

Note that the weight vectors can be different for the two datasets, but the features
ϕ(x) must be the same.

Solution One option is ϕ(x) = [1, x2], and using w1 = [−1, 2] and w2 = [1,−2].
Then in D1:

• For x = −1, w1 · ϕ(x) = [−1, 2] · [1, 1] = 1 > 0

• For x = 0, w1 · ϕ(x) = [−1, 2] · [1, 0] = −1 < 0

• For x = 1, w1 · ϕ(x) = [−1, 2] · [1, 1] = 1 > 0

In D2:

• For x = −1, w2 · ϕ(x) = [1,−2] · [1, 1] = −1 < 0

• For x = 0, w2 · ϕ(x) = [1,−2] · [1, 0] = 1 > 0

• For x = 1, w2 · ϕ(x) = [1,−2] · [1, 1] = −1 < 0

Note that there are many options that work, so long as -1 and 1 are separated from 0.

Some additional food for thought: Is every dataset linearly separable in some feature
space? In other words, given pairs (x1, y1), . . . , (xn, yn), can we find a feature extractor
ϕ such that we can perfectly classify (ϕ(x1), y1), . . . , (ϕ(xn), yn) for some linear model
w? If so, is this a good feature extractor to use?

1

Solution In theory, yes we can. If we assume that our inputs x1, . . . ,xn are distinct,
then we can construct a feature map ϕ : xi 7→ yi for i = 1, . . . , n. By setting w⋆ = [1],
it’s clear that

yiw
⋆ · ϕ(xi) = yi ∗ yi = 1 > 0, i = 1, . . . , n, (1)

so w⋆ correctly classifies all the points in the dataset.

Hopefully, it’s clear that this is a poor choice of feature map. For one, this feature ex-
tractor is undefined for any points outside of the training set! But even more broadly,
this process is not at all generalizeable. We are essentially just memorizing our dataset
instead of learning patterns and structures within the data that will allow us to accu-
rately predict new points in the future. While minimizing training loss is an important
part of the machine learning process (the aforementioned procedure gives you zero
training loss!), it does not guarantee you good performance in the future.

2

2) Problem 2: Backpropagation

Consider the following function

Loss(x, y, z, w) = 2(xy +max{w, z})

Run the backpropagation algorithm to compute the four gradients (each with respect
to one of the individual variables) at x = 3, y = −4, z = 2 and w = −1. Use the
following nodes: addition, multiplication, max, multiplication by a constant.

Solution When calculating the gradients, we run backpropagation from the root
node to the leaves nodes. As shown on the computation graph below, the purple
values are the gradients of Loss with respect to each node.

3

3) Problem 3: K-means

Consider doing ordinary K-means clustering with K = 2 clusters on the following
set of 3 one-dimensional points:

{−2, 0, 10}. (2)

Recall that K-means can get stuck in local optima. Describe the precise conditions on
the initialization µ1 ∈ R and µ2 ∈ R such that running K-means will yield the global
optimum of the objective function. Notes:

• Assume that µ1 < µ2.

• Assume that if in step 1 of K-means, no points are assigned to some cluster j,
then in step 2, that centroid µj is set to ∞.

• Hint: try running K-means from various initializations µ1, µ2 to get some intu-
ition; for example, if we initialize µ1 = 1 and µ2 = 9, then we converge to µ1 = −1
and µ2 = 10.

Solution The objective is minimized for µ1 = −1 and µ2 = 10. First, note that if
all three points end up in one cluster, K-means definitely fails to recover the global
optimum. Therefore, −2 must be assigned to the first cluster, and 10 must be assigned
to the second cluster. 0 can be assigned to either: If 0 is assigned to cluster 1, then
we’re done. If it is assigned to cluster 2, then we have µ1 = −2, µ2 = 5; in the next
iteration, 0 will be assigned to cluster 1 since its closer. Therefore, the condition on
the initialization written formally is | − 2−µ1| < | − 2−µ2| and |10−µ1| > |10−µ2|.

4

4) [optional] Problem 4: Non-linear decision boundaries

Suppose we are performing classification where the input points are of the form (x1, x2) ∈
R2. We can choose any subset of the following set of features:

F =

{
x2
1, x

2
2, x1x2, x1, x2,

1

x1

,
1

x2

, 1,1[x1 ≥ 0],1[x2 ≥ 0]

}
(3)

For each subset of features F ⊆ F , let D(F) be the set of all decision boundaries
corresponding to linear classifiers that use features F .

For each of the following sets of decision boundaries E, provide the minimal F such
that D(F) ⊇ E. If no such F exists, write ‘none’.

• E is all lines [CA hint]:

(4)

• E is all circles centered at the origin:

(5)

• E is all circles:

(6)

• E is all axis-aligned rectangles:

(7)

• E is all axis-aligned rectangles whose lower-right corner is at (0, 0):

(8)

Solution

• Lines: x1, x2, 1 (ax1 + bx2 + c = 0)

• Circles centered at the origin: x2
1, x

2
2, 1 (x2

1 + x2
2 = r2)

• Circles centered anywhere in the plane: x2
1, x

2
2, x1, x2, 1 ((x1−a)2+(x2−b)2 = r2)

• Axis aligned rectangles: not possible (need features of the form 1[x1 ≤ a])

• Axis aligned rectangles with lower right corner at (0, 0): not possible

5

1. Movie Genre(s) (20 points)
You are interested in classifying the genre(s) of a movie given its plot summary. For

simplicity, assume there are only three genres in the universe: action, romance, and comedy.
You decide that you will model this as three binary classification problems, one for each
genre.

For each plot summary x, you represent the corresponding movie M ’s genre(s) with
y ∈ {0, 1}3, where

y1 = 1[M is an action movie],
y2 = 1[M is a romance movie],
y3 = 1[M is a comedy movie].

a. (12 points) Sharing is Caring
You decide to use a feature extractor φ that maps each word in the English vocabulary to

the number of occurrences of that word in the plot summary. Assume our English vocabulary
D contains only the top 10,000 words in English (by frequency). Any out-of-vocabulary word
is ignored.

Recall that the logistic function σ(z) = (1 + e−z)−1 takes in a real number and outputs
a probability in (0, 1). After some research, you learned that the logistic function is often
used with the logistic loss function for binary classification. Given a label y ∈ {0, 1} and
predicted probability p ∈ [0, 1],

LogLoss(y, p) = −
(
y log p+ (1− y) log(1− p)

)
.

You decide to use these shiny new tools to solve your problem.

(i) [1 point] One way to solve your problem is to build three binary classifiers. For a
plot summary x and genre k ∈ {1, 2, 3}, the predicted probability that yk = 1 is
pk = σ(wk ·φ(x)). How many parameters will there be in the three classifiers combined?
No justification required.

Solution 30, 000. Each classifier has 10, 000 parameters, so there are 3 × 10, 000 =
30, 000 parameters.

3

(ii) [6 points] You’ve heard that having too many parameters can lead to bad generalization
and want to find a way to reduce it. Since the three binary classification tasks are all
about predicting movie genre and are thus related in nature, why not let the three
classifiers share parameters? You come up with the following computation graph:

where V is a trainable weight matrix shared among all three classifiers such that
Vφ(x) ∈ R2 for all x.

Now, for any k ∈ {1, 2, 3}, the predicted probability that yk = 1 is pk = σ(wk · Vφ(x)).

• In this setup, how many parameters are there in the three classifiers combined?
No justification required.

Solution 20,006. Since Vφ(x) ∈ R2, V must be a 2 × |D| matrix, which has
2 × 10, 000 parameters. For the dimensionality to match, w1, w2, w3 are all 2-
dimensional vectors. So there are 20,006 parameters in total.

4

• The pointwise loss function Loss(x, y,V,w1,w2,w3) is defined as follows:

Loss(x, y,V,w1,w2,w3) =
3∑

k=1

LogLoss(yk, pk)

=
3∑

k=1

−
(
yk log σ(wk ·Vφ(x)) + (1− yk) log

(
1− σ(wk ·Vφ(x))

))
.

Derive the gradient of the pointwise loss with respect tow1, i.e.,∇w1Loss(x, y,V,w1,w2,w3).
You can use p1 in your final expression. Show your work.
Hint: Feel free to use σ′(z) = σ(z)

(
1− σ(z)

)
directly without showing the inter-

mediate steps.

Solution
∇w1Loss(x, y,V,w1,w2,w3) = (p1 − y1)Vφ(x)

Derivation:

∇w1Loss(x, y,V,w1,w2,w3) (1)
=∇w1 LogLoss(y1, p1)

=∇w1 −
(
y1 log σ(w1 ·Vφ(x)) + (1− y1) log

(
1− σ(w1 ·Vφ(x))

))
(2)

=−
(
y1

1

p1
σ′
(
w1 ·Vφ(x)

)
∇w1(w1 ·Vφ(x))

+ (1− y1)
1

1− p1

(
− σ′

(
w1 ·Vφ(x)

))
∇w1(w1 ·Vφ(x))

)
(3)

=−
(
y1
p1(1− p1)

p1
∇w1(w1 ·Vφ(x))− (1− y1)

p1(1− p1)
1− p1

∇w1(w1 ·Vφ(x))
)

(4)

=−
(
y1(1− p1)Vφ(x)− (1− y1)p1Vφ(x)

)
(5)

=−Vφ(x)(y1 − p1) = (p1 − y1)Vφ(x) (6)

5

(iii) [5 points] You plan to use regular gradient descent to train your classifiers. Suppose
you have a dataset of N points (x(i), y(i)). You define the overall training loss as follows:

TrainLoss(V,w1,w2,w3) =
1

N

N∑

i=1

Loss(x(i), y(i),V,w1,w2,w3).

Below is your gradient descent algorithm:

Algorithm 1: Gradient Descent
1: Randomly shuffle the training data
2: Initialize w1 = w2 = w3 = 0, initialize V with random non-zero matrix
3: for t = 1, 2, . . . , T do
4: // calculate gradients
5: for k = 1, 2, 3 do
6: vk ← ∇wk

TrainLoss(V,w1,w2,w3) // get gradient w.r.t wk

7: end for
8: U← ∇VTrainLoss(V,w1,w2,w3) // get gradient w.r.t V
9:

10: // update weights
11: for k = 1, 2, 3 do
12: wk ← wk − ηvk // update wk

13: end for
14: V← V − ηU // update V
15: end for

6

Consider a training dataset D with two datapoints (x(1), y(1)) and (x(2), y(2)). You run
gradient descent on D and initialize w1 = w2 = w3 = 0 per Line 2 in the algorithm
described above. Upon initializing V randomly, we see that

Vφ(x(1)) = [5,−2]T , y(1) = [0, 1, 1]T

and Vφ(x(2)) = [−1, 2]T , y(2) = [1, 0, 1]T .

You run gradient descent on this dataset with η = 0.1. What is the value of w1 at the
end of one iteration? Show your work.

Note: We are expecting the value of w1 only, not w2 or w3.

Solution For all k,

vk = ∇wk
TrainLoss(V0,w1,w2,w3) =

1

2

2∑

i=1

∇wk
Loss(x(i), y(i),V0,w1,w2,w3)

=
1

2

(
(p

(1)
k − y

(1)
k)V0φ(x

(1)) + (p
(2)
k − y

(2)
k)V0φ(x

(2))
)
.

Note that for all k, since wk = 0, p(1)k = p
(2)
k = σ(0 ·V0φ(x)) = σ(0) = (1+e0)−1 = 0.5.

And since η = 0.1, after the first iteration, wk = 0− ηvk = −0.1vk.

We see that

v1 =
1

2

(
(0.5− 0)[5,−2]T + (0.5− 1)[−1, 2]T

)
= [1.5,−1]T .

Therefore,
w1 = [−0.15, 0.1]T .

Misses that the teaching staff saw include:

• Not averaging the gradient update across the dataset (i.e., dropping the 1
N

term)

• Calculating gradient but forgetting to update

• Mixing up the subscript used in w1 with the superscripts used in the datapoints

7

b. (8 points) Less is More
You tried running gradient descent, but since V is a large matrix, your computer does

not have enough memory to store the gradient with respect to V, so you couldn’t train your
model properly.

Luckily, your friend Alice has worked on a similar problem (e.g., classifying fiction genres
given synopsis) and trained a model with the same architecture as yours. You ask Alice to
share with you the weights of her trained classifier, which includes a weight matrix V0 that
has exactly the same shape as V.

Since Alice’s problem is similar to yours, you believe the solution should be similar as
well. Hence, you decide to initialize V with V0 and never update it in order to get around
the memory constraint. In other words, you run gradient descent only on w1, w2, and
w3.

You tell Alice about your new gradient descent algorithm, and the idea to make a new
memory-efficient classifier that shares V0.

Alice responds: “Actually, what you have here isn’t a new kind of classifier. It’s actually
three classifiers with a shared feature extractor.” Though shocked at first, after some thought,
you agree with her as well.

(i) [2 points] Show that Alice is right by filling in the blank below:

Given a plot summary x, for each genre k ∈ {1, 2, 3},
the predicted probability that yk = 1 is pk = σ(wk · τ(x)),
where τ(x) = is the shared feature extractor.

No justification required.

Solution τ(x) = V0φ(x).

(ii) [1 point] In this setup, how many parameters are there in the three classifiers combined?
No justification required.

Solution 6. The only parameters are w1, w2, and w3, which are all 2-dimensional.

(iii) [5 points] Between the following:

(A) three classifiers that share φ(x) as feature extractor (i.e., your idea in a(i))

(B) three classifiers that share τ(x) as feature extractor

Which setup has higher approximation error? Which one has higher estimation error?
Justify your answer with 1-2 sentences.

8

Solution (B) has higher approximation error. (A) has higher estimation error. This
is because (A) has a much larger hypothesis class. Each of the three weight vectors in
(A) has much higher dimensionality than each of the three weight vectors in (B). More
specifically, as we saw in 1a(i), each weight vector in (A) is 10,000-dimensional; as we
saw in 1b(ii), each weight vector in (B) is 2-dimensional.

A commonly seen incorrect justification relates estimation/approximation error to the
accuracy/inaccuracy of having a pre-trained weight matrix rather than the number of
parameters.

9

