
CS221 Problem Workout
Week 4

1) [CA session] Riding the Bus

(a) Norbert wants to go from their house (located at 1) to the gym (located at n).
At each location s, they can either (i) deterministically walk forward to the next
location s+ 1 (takes 1 unit of time) or (ii) wait for the bus. The bus comes with
probability ϵ, in which case, they will reach the gym in 1+α(n− s) units of time,
where α is some parameter. If the bus doesn’t come, well, they stays put, and
that takes 1 unit of time. Let our reward be negative time, which is equivalent to
minimizing the time it takes to get to the gym.

1 2 3 4 . . . n

House · · · Gym

We have formalized the problem as an MDP for you:

• State: s ∈ {1, 2, . . . , n} is Sabina’s location
• Actions(s) = {Walk,Bus}

• Reward(s,Walk, s′) =

{
−1 if s′ = s+ 1

−∞ otherwise

• Reward(s,Bus, s′) =


−1− α(n− s) if s′ = n

−1 if s′ = s

−∞ otherwise

• T (s′|s,Walk) =

{
1 if s′ = s+ 1

0 otherwise

• T (s′|s,Bus) =


ϵ if s′ = n

1− ϵ if s′ = s

0 otherwise
• IsEnd(s) = 1[s = n]

BEFORE YOU MOVE FORWARD: Make sure you understand why
the MDP is formulated the way it is!

1



Compute a closed form expression for the value of the “always walk” policy and
the “always wait for the bus” policy (using some or all of the variables ϵ, α, n).
Assume a discount rate of γ = 1.

• VWalk(s) =

• VBus(s) =

• For what values of ϵ (as a function of α and n) is it advantageous to walk
rather than take the bus?

2



(b) Due to bureaucracy, Norbert’s town is unable to provide them with transition
probabilities or a reward function (i.e. a bus schedule). To solve this, Norbert
decides to use reinforcement learning, specifically Q-learning to determine the best
policy. Norbert starts going around town both by bus and by walking, recording
the following data:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5
1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Run the Q-learning algorithm once over the given data to compute an estimate of
the optimal Q-value Qopt(s, a). Process the episodes from left to right. Assume all
Q-values are initialized to zero, and use a learning rate of η = 0.5 and a discount
of γ = 1.

• Q̂(1,Walk) =

• Q̂(1,Bus) =

• Q̂(3,Walk) =

• Q̂(3,Bus) =

• Q̂(4,Walk) =

• Q̂(4,Bus) =

3



(c) After using Q-learning, Norbert wants to try a different algorithm to compute Q̂.
They consider SARSA, Model-Free Monte Carlo, and Model-Based Monte Carlo
with Value Iteration. Which of these can Norbert use to compute the optimal
policy? Explain why.

(d) Norbert’s job decided to start subsidizing their bus pass. Norbert decides that for
states s < 3

4
n they will take the bus and for states s ≥ 3

4
n they will walk. Write

down a policy function π(s) to represent this.
Norbert wants to know how long their expected commute will be. Should they
use Q-Learning, SARSA, or Model-Free Monte Carlo to compute that, and why?
Will the algorithm converge to the correct Q̂π(s, a) for all states after going to
work enough times? (recall that the starting state is s = 1 and assume n > 1).

(e) Why is there (potentially) a convergence problem in this situation? How can
Norbert change their policy to π′ so that V̂π′(s) converges for all states?

(f) Now that Norbert understands on vs off policy learning, they consider their at-
tempt at Q-learning from part (b). They’d like to generate more data, but still
get to the gym in a reasonable amount of time. What kind of policy would do
this while guaranteeing convergence?

4



2) [CA session] Choosing the Algorithm

For each of the following scenarios, determine whether Model-Based Monte Carlo,
Model-Free Monte Carlo, SARSA, or Q-Learning should be used and why. Note there
can be more than one good answer.

(a) You work in a chemistry lab that is conducting some extremely expensive exper-
iments. Unfortunately, sometimes the actions you take cause non-deterministic
outcomes (due to unobservable factors), and your reaction transitions to a dif-
ferent state randomly. Your team has several different strategies they’d like to
test for running these experiments, but you don’t have enough budget for lots of
trials. Fortunately, the number of states and possible actions are relatively small,
and you have detailed notes on many past experiments run. What should you do
and why?

(b) Your roommate Valentin seems to win a lot of money playing poker against his
friends. Based on what you know about him, you’ve got some ideas for strategies
against him, but you’re concerned you’ll lose to his friends by tailoring your
strategy to him. You decide to build a poker bot to test your strategies against
random players online. You choose your reward to be how much you win at the
end of a round. Which algorithm should you use and why?

(c) You decide to foster a cat, Monte, from the local Humane Society. Unfortunately,
Monte is quite skittish and really likes the dark. As such, he won’t get out from
under your bed. You’ve assembled an arsenal of treats, toys, and trinkets to try
and lure out Monte. Some things seem to pique his interest, but he won’t seem
to come out. You’re pretty sure that presenting him with the right order of items
at the right time of day might convince him to come out. Which algorithm could
you use?

5



(d) For your CS 221 project you decide to build a bot to play Monopoly. After
coding up all of the states, (pieces on the board, how much money each player
has, etc.) you decide to train with Model-Free Monte Carlo. After using all of
your compute credits, you realize that nearly every entry in your table that stores
Q̂(s, a) is empty (how you made a table that big is besides the point). How can
you fix this?

6



3) [Extra Practice] Problem 3

You’re programming a self-driving car that can take you from home (position 1) to
school (position n). At each time step, the car has a current position x ∈ {1, . . . , n}
and a current velocity v ∈ {0, . . . ,m}. The car starts with v = 0, and at each time
step, the car can either increase the velocity by 1, decrease it by 1, or keep it the same;
this new velocity is used to advance x to the new position. The velocity is not allowed
to exceed the speed limit m nor return to 0.

In addition, to prevent people from recklessly cruising down Serra Mall, the university
has installed speed bumps at a subset of the n locations. The speed bumps are located
at B ⊆ {1, . . . , n}. The car is not allowed to enter, leave, or pass over a speed bump
with velocity more than k ∈ {1, . . . ,m}. Your goal is to arrive at position n with
velocity 1 in the smallest number of time steps.

Figure 1 shows an example with n = 9 positions and one speed bump B = {5}. If the
maximum speed is m = 3 and k = 1 for a speed bump, then an example of a legal
path is the following:

(1, 0)
+1→ (2, 1)

+1→ (4, 2)
−1→ (5, 1)

0→ (6, 1)
+1→ (8, 2)

−1→ (9, 1)

Figure 1: An example of a legal path that takes 6 time steps with m = 3 and k = 1. We
show the position-velocity pairs (x, v) at each time step, and each number above an arrow
is an acceleration (change in velocity).

(a) It turns out that you were so excited about the AI algorithms that you didn’t
really pay much attention to the brakes of the car. As a result, when you try to
decrease the velocity by 1, with some failure probability α, the velocity actually
stays the same. To simplify our lives, assume there are no speed bumps. Assume
a reward of R if we get to school (at a velocity of 1) but −1 if we pass the school,
with a cost of 1 per time step. Let us formulate the resulting problem as an MDP:

• sstart = (1, 0)

• Actions((x, v)) = {a ∈ {+1, 0,−1} : x + v + a ≤ n ∧ v + a ≤ m ∧ (v + a ≤
k ∨ {x, . . . , x + v + a} ∩ B = ∅)}. Suppose we want to apply acceleration a.
First, we want to make sure we don’t exceed the school (x + v + a ≤ n) or
go out of the velocity range (v + a ≤ m). Next, we want to make sure that
we’re not entering, passing through, or leaving any speed bumps at a velocity
greater than k. This is captured logically by ensuring a safe speed (v+a ≤ k)
or checking that there are no speed bumps between x and the new location
x+ v + a.

7



• T ((x′, v′)|(x, v), a) = (to be filled out by you below)
• Reward((x, v), a, (x′, v′)) = R · 1[x′ = n ∧ v′ = 1]− 1

• IsEnd((x, v)) = 1[x ≥ n]

(i) Fill out the definition of the transition probabilities T :

T ((x′, v′)|(x, v), a) =

8



(ii) Let us explore the effect of unreliable brakes. Consider the example in Figure2.

Figure 2: An small driving environment without speed bumps.

Consider two policies:

• π1: always move with velocity 1:

π1((1, 0)) = +1 π1((2, 1)) = 0 π1((3, 1)) = 0 π1((4, 1)) = 0.

• π2: speed up and slow down:

π2((1, 0)) = +1 π2((2, 1)) = +1 π2((4, 2)) = −1.

Compute the expected utility of π1 as a function of α and R (with discount γ = 1).
Compute the expected utility of π2 as a function of α and R (with discount γ = 1).
For what values of α and R does π2 obtain higher expected reward than π1? Your
answer should be an expression relating α and R.

9



(b) Bad news: you realize that your brakes are not only faulty, but that you don’t
know how often they fail (α is unknown). Circle all of the following algorithms
that can be used to compute the optimal policy in this setting:

model-based value iteration model-free Monte Carlo SARSA Q-learning

10


