CS221 Problem Session

Week 7

1) Problem 1: Markov Networks

This problem will give you some practice on computing probabilities given a Markov network. Specifically, given the Markov network below, we will ask you questions about the probability distribution $\mathbb{P}\left(X_{1}, X_{2}, X_{3}\right)$ over the binary random variables X_{1}, X_{2}, and X_{3}.

(a) What is the normalization constant Z (i.e. the total of all possible weights)?
(b) What is $\mathbb{P}\left(X_{1}=0, X_{2}=0, X_{3}=0\right)$?
(c) What is $\mathbb{P}\left(X_{1}=0, X_{2}=1, X_{3}=0\right)$?
(d) What is $\mathbb{P}\left(X_{2}=0\right)$?
(e) What is $\mathbb{P}\left(X_{3}=0\right)$?

2) Problem 2: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads $(Y=\mathrm{H})$ with probability λ and tails $(Y=\mathrm{T})$ with probability $1-\lambda$.
- If Y comes up heads $(Y=\mathrm{H})$, you make a Healthy bag, where you:
(a) Add one Apple candy with probability p_{1} or nothing with probability $1-p_{1}$;
(b) Add one Banana candy with probability p_{1} or nothing with probability $1-p_{1}$;
(c) Add one Caramel candy with probability $1-p_{1}$ or nothing with probability p_{1};
(d) Add one Dark-Chocolate candy with probability $1-p_{1}$ or nothing with probability p_{1}.
- If Y comes up tails $(Y=\mathrm{T})$, you make a Tasty bag, where you:
(a) Add one Apple candy with probability p_{2} or nothing with probability $1-p_{2}$;
(b) Add one Banana candy with probability p_{2} or nothing with probability $1-p_{2}$;
(c) Add one Caramel candy with probability $1-p_{2}$ or nothing with probability p_{2};
(d) Add one Dark-Chocolate candy with probability $1-p_{2}$ or nothing with probability p_{2}.

For example, if $p_{1}=1$ and $p_{2}=0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_{1} and p_{2}, bags can contain anywhere between 0 and 4 pieces of candy.
Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.
(a) Draw the Bayesian network corresponding to process of creating a single bag.
(b) What is the probability of generating a Healthybag containing Apple, Banana, Caramel, and not Dark-Chocolate? For compactness, we will use the following notation to denote this possible outcome:
(Healthy, \{Apple, Banana, Caramel\}).
(c) What is the probability of generating a bag containing Apple, Banana, Caramel, and not Dark-Chocolate?
(d) What is the probability that a bag was a Tasty one, given that it contains Apple, Banana, Caramel, and not Dark-Chocolate?

