CS221 Problem Session

Week 7

1) Problem 1: Markov Networks

This problem will give you some practice on computing probabilities given a Markov network. Specifically, given the Markov network below, we will ask you questions about the probability distribution $\mathbb{P}(X_1, X_2, X_3)$ over the **binary** random variables X_1, X_2 , and X_3 .

(a) What is the normalization constant Z (i.e. the total of all possible weights)?

(b) What is $\mathbb{P}(X_1 = 0, X_2 = 0, X_3 = 0)$?

(c) What is $\mathbb{P}(X_1 = 0, X_2 = 1, X_3 = 0)$?

(d) What is $\mathbb{P}(X_2 = 0)$?

(e) What is $\mathbb{P}(X_3 = 0)$?

2) Problem 2: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads (Y = H) with probability λ and tails (Y = T) with probability 1λ .
- If Y comes up heads (Y = H), you make a **H**ealthy bag, where you:
 - (a) Add one Apple candy with probability p_1 or nothing with probability $1-p_1$;
 - (b) Add one Banana candy with probability p_1 or nothing with probability $1-p_1$;
 - (c) Add one Caramel candy with probability $1 p_1$ or nothing with probability p_1 ;
 - (d) Add one Dark-Chocolate candy with probability $1-p_1$ or nothing with probability p_1 .
- If Y comes up tails (Y = T), you make a Tasty bag, where you:
 - (a) Add one Apple candy with probability p_2 or nothing with probability $1-p_2$;
 - (b) Add one Banana candy with probability p_2 or nothing with probability $1-p_2$;
 - (c) Add one Caramel candy with probability $1 p_2$ or nothing with probability p_2 ;
 - (d) Add one **D**ark-Chocolate candy with probability $1 p_2$ or nothing with probability p_2 .

For example, if $p_1 = 1$ and $p_2 = 0$, you would deterministically generate: **H**ealthy bags with one **A**pple and one **B**anana; and **T**asty bags with one **C**aramel and one **D**ark-Chocolate. For general values of p_1 and p_2 , bags can contain anywhere between 0 and 4 pieces of candy.

Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.

(a) Draw the Bayesian network corresponding to process of creating a single bag.

(b)	What is the probability of generating a Healthybag containing Apple, Banana, Caramel, and not Dark-Chocolate? For compactness, we will use the following notation to denote this possible outcome:
	$(\mathbf{H}\mathbf{e}\mathbf{a}\mathbf{l}\mathbf{t}\mathbf{h}\mathbf{y}, \{\mathbf{A}\mathbf{p}\mathbf{p}\mathbf{l}\mathbf{e}, \mathbf{B}\mathbf{a}\mathbf{n}\mathbf{a}\mathbf{n}\mathbf{a}, \mathbf{C}\mathbf{a}\mathbf{r}\mathbf{a}\mathbf{m}\mathbf{e}\mathbf{l}\}).$
(c)	What is the probability of generating a bag containing ${f A}$ pple, ${f B}$ anana, ${f C}$ aramel, and not ${f D}$ ark-Chocolate?
(d)	What is the probability that a bag was a Tasty one, given that it contains \mathbf{A} pple, \mathbf{B} anana, \mathbf{C} aramel, and not \mathbf{D} ark-Chocolate?