CS221 Problem Session

Week 8

1) [CA session] Problem 1: The Bayesian Bag of Candies Model (Again)

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads $(Y=\mathrm{H})$ with probability λ and tails $(Y=\mathrm{T})$ with probability $1-\lambda$.
- If Y comes up heads $(Y=\mathrm{H})$, you make a Healthy bag, where you:
(a) Add one Apple candy with probability p_{1} or nothing with probability $1-p_{1}$;
(b) Add one $\mathbf{B a n a n a}$ candy with probability p_{1} or nothing with probability $1-p_{1}$;
(c) Add one Caramel candy with probability $1-p_{1}$ or nothing with probability p_{1}
(d) Add one Dark-Chocolate candy with probability $1-p_{1}$ or nothing with probability p_{1}.
- If Y comes up tails $(Y=\mathrm{T})$, you make a Tasty bag, where you:
(a) Add one Apple candy with probability p_{2} or nothing with probability $1-p_{2}$;
(b) Add one Banana candy with probability p_{2} or nothing with probability $1-p_{2}$;
(c) Add one Caramel candy with probability $1-p_{2}$ or nothing with probability p_{2}
(d) Add one Dark-Chocolate candy with probability $1-p_{2}$ or nothing with probability p_{2}.

For example, if $p_{1}=1$ and $p_{2}=0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_{1} and p_{2}, bags can contain anywhere between 0 and 4 pieces of candy.
Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.

(a) You realize you need to make more candy bags, but you've forgotten the probabilities you used to generate them. So you try to estimate them looking at the 5 bags you've already made:

$\operatorname{bag} 1:$	$($ Healthy, $\{$ Apple, Banana $\})$
$\operatorname{bag} 2:$	(Tasty, $\{$ Caramel, Dark-Chocolate $\})$
$\operatorname{bag} 3:$	(Healthy, $\{$ Apple, Banana $\})$
$\operatorname{bag} 4:$	(Tasty, $\{$ Caramel, Dark-Chocolate $\})$
$\operatorname{bag} 5:$	(Healthy, $\{$ Apple, Banana $\})$

Estimate λ, p_{1}, p_{2} by maximum likelihood.
(b) That was too easy, let's try again:
bag 1: (Healthy, \{Apple, Banana, Caramel\})
bag 2: (Tasty, \{Apple, Caramel, Dark-Chocolate\})
bag 3 :
(Healthy, \{Banana, Caramel\})
bag 4: (Tasty, \{Apple, Banana, Dark-Chocolate\})
bag 5: (Healthy, \{Apple, Banana\})
Estimate λ, p_{1}, p_{2} by maximum likelihood (i.e. counting and normalizing). Hint: Estimate $p_{1 / 2}$ or $1-p_{1 / 2}$ but not both.
(c) You find out your little brother had been playing with your candy bags, and had mixed them up (in a uniformly random way). Now you don't even know which ones were Healthy and which ones were Tasty. So you need to re-estimate λ, p_{1}, p_{2}, but now without knowing whether the bags were Healthy or Tasty.

$\operatorname{bag} 1:$	$(?,\{$ Apple, Banana, Caramel\})
$\operatorname{bag} 2:$	$(?,\{$ Caramel, Dark-Chocolate $\})$
$\operatorname{bag} 3:$	$(?,\{$ Apple, Banana, Caramel\})
$\operatorname{bag} 4:$	$(?,\{$ Caramel, Dark-Chocolate $\})$
$\operatorname{bag} 5:$	

You remember the EM algorithm is just what you need. Initialize with $\lambda=$ $0.5, p_{1}=0.5, p_{2}=0$, and run one step of the EM algorithm. Hint: You might use conditional probabilities found in last week's problem session (2d) for this problem.
(i) E-step:
(ii) M-step:
(d) You decide to make candy bags according to a new process. You create the first one as described above. Then with probability μ, you create a second bag of the same type as the first one (Healthy or Tasty), and of different type with probability $1-\mu$. Given this type, the bag is filled with candy as before. Then with probability μ, you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability $1-\mu$. And so on, you repeat the process M times. Denote $Y_{i}, A_{i}, B_{i}, C_{i}, D_{i}$ the variables at each time step, for $i=0, \ldots, M$. Let $X_{i}=\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$. Note that in the figure below, each X_{i} represents four separate nodes $A_{i}, B_{i}, C_{i}, D_{i}$, each with parent Y_{i} (just like the earlier figure).

Now you want to compute:

$$
\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

exactly for all $i=0, \ldots, M$, and you decide to use the forward-backward algorithm.
Suppose you have already computed the marginals:

$$
f_{i}=\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

for some $i \geq 0$. Recall the first step of the algorithm is to compute an intermediate result proportional to

$$
\mathbb{P}\left(Y_{i+1} \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

(i) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters $p_{1}, p_{2}, \lambda, \mu$.
(ii) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Tasty } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters of the model $p_{1}, p_{2}, \lambda, \mu$. The proportionality constant should be the same as in (i) (you don't need to find it).
(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of h, t.

