1) [CA session] Problem 1: The Bayesian Bag of Candies Model (Again)

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads ($Y = H$) with probability λ and tails ($Y = T$) with probability $1 - \lambda$.
- If Y comes up heads ($Y = H$), you make a Healthy bag, where you:

 (a) Add one Apple candy with probability p_1 or nothing with probability $1 - p_1$;
 (b) Add one Banana candy with probability p_1 or nothing with probability $1 - p_1$;
 (c) Add one Caramel candy with probability $1 - p_1$ or nothing with probability p_1;
 (d) Add one Dark-Chocolate candy with probability $1 - p_1$ or nothing with probability p_1.

- If Y comes up tails ($Y = T$), you make a Tasty bag, where you:

 (a) Add one Apple candy with probability p_2 or nothing with probability $1 - p_2$;
 (b) Add one Banana candy with probability p_2 or nothing with probability $1 - p_2$;
 (c) Add one Caramel candy with probability $1 - p_2$ or nothing with probability p_2;
 (d) Add one Dark-Chocolate candy with probability $1 - p_2$ or nothing with probability p_2.

For example, if $p_1 = 1$ and $p_2 = 0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_1 and p_2, bags can contain anywhere between 0 and 4 pieces of candy.

Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.
You realize you need to make more candy bags, but you’ve forgotten the probabilities you used to generate them. So you try to estimate them looking at the 5 bags you’ve already made:

\begin{align*}
bag 1 : & \quad \text{(Healthy, \{Apple, Banana\})} \\
bag 2 : & \quad \text{(Tasty, \{Caramel, Dark-Chocolate\})} \\
bag 3 : & \quad \text{(Healthy, \{Apple, Banana\})} \\
bag 4 : & \quad \text{(Tasty, \{Caramel, Dark-Chocolate\})} \\
bag 5 : & \quad \text{(Healthy, \{Apple, Banana\})}
\end{align*}

Estimate \(\lambda, p_1, p_2 \) by maximum likelihood.

Solution Out of 5 bags, 3 are Healthy, so \(\lambda = 3/5 \). To estimate \(p_1 \), we only consider the 3 healthy bags. For a Healthy bag, the probability of adding Apple, Banana, not Caramel, and not Dark-Chocolate is \((p_1)^4\). For the three bags, the probability becomes \((p_1)^{12}\), which is maximized for \(p_1 = 1 \). Equivalently, to generate 3 Healthy bags, we flip a (biased) coin of parameter \(p_1 \) 12 times. Since we observe 12 “heads”, the maximum likelihood estimate is \(p_1 = 1 \). To generate 2 Tasty bags, we flip a (biased) coin of parameter \(p_2 \) 8 times. Since we observe 0 “heads”, the maximum likelihood estimate is \(p_2 = 0 \).

\[
\lambda = 3/5 \quad p_1 = 12/12 = 1 \quad p_2 = 0/8 = 0
\]

That was too easy, let’s try again:

\begin{align*}
bag 1 : & \quad \text{(Healthy, \{Apple, Banana, Caramel\})} \\
bag 2 : & \quad \text{(Tasty, \{Apple, Caramel, Dark-Chocolate\})} \\
bag 3 : & \quad \text{(Healthy, \{Banana, Caramel\})} \\
bag 4 : & \quad \text{(Tasty, \{Apple, Banana, Dark-Chocolate\})} \\
bag 5 : & \quad \text{(Healthy, \{Apple, Banana\})}
\end{align*}

Estimate \(\lambda, p_1, p_2 \) by maximum likelihood (i.e. counting and normalizing). Hint: Estimate \(p_{1/2} \) or \(1 - p_{1/2} \) but not both.

Solution \(\lambda = 3/5 \) is the same since we still have 3/5 Healthy bags. For \(p_1 \) and \(p_2 \) we have parameter sharing. Thus we can count the number of times we get Apple or Banana and don’t get Caramel or Dark-Chocolate and use that to estimate \(p_1 \) or \(p_2 \) depending on the bag type. Define

\[
p_1 = \frac{|\text{Apple}| + |\text{Banana}| + |\neg \text{Caramel}| + |\neg \text{Dark-Chocolate}|}{4|\text{Healthy bags}|} \quad \text{in Healthy bags}
\]

\[
p_1 = \frac{9}{12}
\]
Similarly for \(p_2 \) we get \(4/8 \). The hint is referring to not separating out Apple and Banana from Caramel and Dark-Chocolate, as that can lead to an incorrect result.

(c) You find out your little brother had been playing with your candy bags, and had mixed them up (in a uniformly random way). Now you don’t even know which ones were Healthy and which ones were Tasty. So you need to re-estimate \(\lambda, p_1, p_2 \), but now without knowing whether the bags were Healthy or Tasty.

\[
\begin{align*}
bag 1 : & \quad (?, \{\text{Apple, Banana, Caramel}\}) \\
bag 2 : & \quad (?, \{\text{Caramel, Dark-Chocolate}\}) \\
bag 3 : & \quad (?, \{\text{Apple, Banana, Caramel}\}) \\
bag 4 : & \quad (?, \{\text{Caramel, Dark-Chocolate}\}) \\
bag 5 : & \quad (?, \{\text{Apple, Banana, Caramel}\})
\end{align*}
\]

You remember the EM algorithm is just what you need. Initialize with \(\lambda = 0.5, p_1 = 0.5, p_2 = 0 \), and run one step of the EM algorithm. Hint: You might use conditional probabilities found in last week's problem session (2d) for this problem.

(i) E-step:

Solution

To evaluate \(P(Y = T | \{A, B, C\}) \) we plug in the parameter values in the formula in from last week:

\[
P(T|\{A, B, C\}) = \frac{P(A, B, C, \neg D | T)P(T)}{P(A, B, C, \neg D)}
\]

\[
= \frac{p_2p_2(1 - p_2)p_1(1 - \lambda)}{\lambda p_1p_1(1 - p_1)p_1 + (1 - \lambda)p_2p_2(1 - p_2)p_2}
\]

\[= 0\]

To evaluate \(P(Y = T | \{C, D\}) \) we use a similar formula obtaining

\[P(Y = T | \{C, D\}) = \frac{(1 - \lambda)(1 - p_2)^4}{\lambda(1 - p_1)^4 + (1 - \lambda)(1 - p_2)^4} = \frac{16}{17}\]

The resulting weighted dataset is:

- (Healthy, \{A, B, C\}), \(1 \times 3 \)
- (Tasty, \{A, B, C\}), \(0 \)
- (Healthy, \{C, D\}), \(1/17 \times 2 \)
- (Tasty, \{C, D\}), \(16/17 \times 2 \)

(ii) M-step:
Solution Now we just do counts. There are $3 + \frac{2}{17}$ Healthy bags out of 5. For p_1, each (Healthy, \{A, B, C\}) corresponds to 3 selections with p_1 and 1 with $1-p_1$ (probability $p_1p_1(1-p_1)p_1$). Each (Healthy, \{C, D\}) corresponds to 4 selections with $1-p_1$ (probability $(1-p_1)^4$). For p_2, each (Tasty, \{C, D\}) corresponds to 4 selections with $1-p_2$ (probability $(1-p_2)^4$). We can ignore the Tasty with 0 weight (why do we get zero weight? $p_2 = 0$ initial guess). The new parameters are:

$$\lambda = \frac{3 + \frac{2}{17}}{5}$$

$$p_1 = \frac{9}{9 + 3 + 4 \times \frac{2}{17}}$$

$$p_2 = 0$$

(d) You decide to make candy bags according to a new process. You create the first one as described above. Then with probability μ, you create a second bag of the same type as the first one (Healthy or Tasty), and of different type with probability $1 - \mu$. Given this type, the bag is filled with candy as before. Then with probability μ, you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability $1 - \mu$. And so on, you repeat the process M times. Denote Y_i, A_i, B_i, C_i, D_i the variables at each time step, for $i = 0, \ldots, M$. Let $X_i = (A_i, B_i, C_i, D_i)$. Note that in the figure below, each X_i represents four separate nodes A_i, B_i, C_i, D_i, each with parent Y_i (just like the earlier figure).

Now you want to compute:

$$\mathbb{P}(Y_i = \text{Healthy} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0))$$

exactly for all $i = 0, \ldots, M$, and you decide to use the forward-backward algorithm.

Suppose you have already computed the marginals:

$$f_i = \mathbb{P}(Y_i = \text{Healthy} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0))$$

for some $i \geq 0$. Recall the first step of the algorithm is to compute an intermediate result proportional to

$$\mathbb{P}(Y_{i+1} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$$

(i) Write an expression that is proportional to

$$\mathbb{P}(Y_{i+1} = \text{Healthy} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$$

in terms of f_i and the parameters p_1, p_2, λ, μ. 4
Solution Emission: When $Y_{i+1} = \text{Healthy}$, the probability of observing $X_{i+1} = (1, 1, 1, 0)$ is $p_1 p_1 (1 - p_1) p_1$.

Transition: There are two cases: either $Y_i = \text{Healthy}$, in which case we transit to $Y_{i+1} = \text{Healthy}$ with probability μ, or $Y_i = \text{Tasty}$, in which case we transit to $Y_{i+1} = \text{Healthy}$ with probability $1 - \mu$.

\[
\propto ((1 - f_i)(1 - \mu) + f_i \mu)p_1 p_1 (1 - p_1) p_1
\]

(ii) Write an expression that is proportional to

\[
P(\tilde{Y}_{i+1} = \text{Tasty} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))
\]

in terms of f_i and the parameters of the model p_1, p_2, λ, μ. The proportionality constant should be the same as in (i) (you don’t need to find it).

Solution (Similar to the previous question)

Emission: When $Y_{i+1} = \text{Tasty}$, the probability of observing $X_{i+1} = (1, 1, 1, 0)$ is $p_2 p_2 (1 - p_2) p_2$.

Transition: There are two cases: either $Y_i = \text{Healthy}$, in which case we transit to $Y_{i+1} = \text{Tasty}$ with probability $1 - \mu$, or $Y_i = \text{Tasty}$, in which case we transit to $Y_{i+1} = \text{Tasty}$ with probability μ.

\[
\propto ((f_i)(1 - \mu) + (1 - f_i) \mu)p_2 p_2 (1 - p_2) p_2
\]

(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

\[
P(\tilde{Y}_{i+1} = \text{Healthy} \mid X_0 = (1, 1, 1, 0), \ldots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))
\]

in terms of h, t.

Solution Since h and t have same proportionality constant, we get the true value of the probability by normalization:

\[
h/(h + t)
\]