
CS221 Problem Session Solutions
Week 9

1) Problem 1: Conjunctive Normal Form

Compute the conjunctive normal form (CNF) of the following two formulas and write
every step of your computation:

(a) P ↔ Q

Solution

P ↔ Q

(P → Q) ∧ (Q → P ) Definition

(¬P ∨Q) ∧ (¬Q ∨ P ) Implication rule

(b) ¬P → ¬¬(Q ∨ (R ∧ ¬S))

Solution

¬P → ¬¬(Q ∨ (R ∧ ¬S))
¬P → (Q ∨ (R ∧ ¬S)) Remove double negative

¬¬P ∨ (Q ∨ (R ∧ ¬S)) Implication rule

P ∨ (Q ∨ (R ∧ ¬S)) Double negative again

(P ∨Q ∨R) ∧ (P ∨Q ∨ ¬S) Distributing

(c) (P → (Q ∨ (R ∧ S))) ∧ (R ∨ (S → Q))

Solution

(P → (Q ∨ (R ∧ S))) ∧ (R ∨ (S → Q))

(P → (Q ∨ (R ∧ S))) ∧ (R ∨ (¬S ∨Q)) Implication rule

(¬P ∨ (Q ∨ (R ∧ S))) ∧ (R ∨ (¬S ∨Q)) Implication rule

(¬P ∨Q ∨R) ∧ (¬P ∨Q ∨ S) ∧ (R ∨ ¬S ∨Q) Distributing

1



2) Problem 2: Proof by Resolution In this question we practice proving by resolution
on the following knowledge base:

Either Heather attended the meeting or Heather was not invited. If the boss wanted
Heather at the meeting, then she was invited. Heather did not attend the meeting. If
the boss did not want Heather there, and the boss did not invite her there, then she is
going to be fired. We are going to (unfortunately) prove Heather is going to be fired.

(a) Write out the knowledge base KB based on the above facts. Convert all formulas
to CNF to save ourselves time later. Hint: you should use four propositional
symbols.

Solution The second and forth facts requires conversion to CNF,Want → Invite
becomes ¬Want∨ Invite, and (¬Want∧¬Invite) → Fire becomes Want∨ Invite∨
Fire by distributing the negation to the first term and replacing the → with ∨.

KB = {Attend ∨ ¬Invite, ¬Want ∨ Invite, ¬Attend, Want ∨ Invite ∨ Fire}

(b) Write down the steps for the resolution-based inference algorithm in the context
of this problem.

Solution Want to show that Heather is going to be fired. This means that if
we added Fire to KB, that it would be entailment (not new information). Since
the opposite of entailment is contradiction, we can equivalently check if adding
¬Fire is contradiction, so that Fire would be entailment. To do that we:

i. Add ¬Fire to KB.

ii. Convert all formulas in the KB to CNF (done!)

iii. Repeatedly apply resolution:

f1 ∨ · · · ∨ fn ∨ p, ¬p ∨ g1 ∨ · · · ∨ gm
f1 ∨ · · · ∨ fn ∨ g1 ∨ · · · ∨ gm

Meaning that we find p such that p and ¬p are in KB and continue to derive
conclusions.

iv. Return entailment iff we derive false.

2



(c) Use the resolution algorithm to prove that Heather is going to be fired.

Solution

Want ∨ Invite ∨ Fire ¬Fire

Want ∨ Invite ¬Want ∨ Invite

Invite ¬Invite ∨ Attend

Attend ¬Attend

False

3



3) Problem 3: First Order Logic

Translate the following sentences into first-order logic formulas (hint: people from Utah
are ‘Utahns’):

(a) Every person from Utah has visited at least one National Park.

Solution People from Utah are called Utahns, so Utahn(x) means that x is a
person from Utah. For binary formulas we will use Likes(x, y) and Visited(x, y).

∀x (Utahn(x) =⇒ ∃y(National Park(y) ∧ Visited(x, y))

(b) Every person from Utah who likes fry sauce also likes french fries.

Solution

∀x (Utahn(x) ∧ Likes(x,Fry Sauce) =⇒ Likes(x,French Fries))

(c) No person from Utah likes Green Jello Salad but at least one person from Utah
likes Pioneer Day.

Solution

(¬∃x (Utahn(x) ∧ Likes(x,Green Jello Salad)))∧(∃y (Utah(y) ∧ Likes(y,Pioneer Day)))

(d) Some Utahns live in California.

Solution
∃x(Utahn(x) ∧ Lives(x,California))

Or
∃x(Utahn(x) ∧ LivesInCalifornia(x))

4



4) Problem 4: Knowledge Base

Imagine we are building a knowledge base of propositions in first order logic and want
to make inferences based on what we know. We will deal with a simple setting, where
we only have three objects in the world: Alice, Carol, and Bob. Our predicates are as
follows:

• Employee(x): x is an employee.

• Boss(x): x is a boss.

• Works(x): x works.

• Paid(x): x gets paid.

The knowledge base we have constructed consists of the following propositions:

(a) Boss(Carol)

(b) Employee(Bob)

(c) Paid(Carol) ∧ Works(Carol)

(d) Paid(Alice)

(e) ∀x (Employee(x) ↔ ¬ Boss(x))

(f) ∀x (Employee(x) → Works(x))

(g) ∀x ((Paid(x) ∧ ¬ Works(x)) → Boss(x))

(a) We know from class that one technique we can use to perform inference with
our knowledge base is to propositionalize the statements of first-order logic into
statements of propositional logic. Practice this by propositionalizing statement
(6) from our knowledge base.

Solution (EmployeeAlice → WorksAlice) ∧ (EmployeeBob → WorksBob) ∧
(EmployeeCarol → WorksCarol)

(b) If we translated the statement ”Anyone who is not a boss either works or does
not get paid” into first-order logic and added it to our knowledge base, how would
the size of the set of valid models representing our knowledge base change, and
why?

Solution The set of valid would stay the same as the statement is entailed by
our current knowledge base.

(c) Using only our original knowledge base (not including the statement from part
(b)), we want to answer the question ”Does everyone work?” We first translate
the sentence ”everyone works” into first order logic as statement f . Determine
the answer to our query by considering the following questions of satisfiability:

1○ Is KB ∪ ¬f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.

5



x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

Solution Yes
x Employee(x) Boss(x) Works(x) Paid(x)

Alice F T F T
Bob T F T T or F
Carol F T T T

2○ Is KB ∪ f satisfiable? Answer yes/no. If yes, fill in the following table with
T for true and F for false to show that there is a satisfying model.

x Employee(x) Boss(x) Works(x) Paid(x)
Alice
Bob
Carol

Solution Yes
x Employee(x) Boss(x) Works(x) Paid(x)

Alice T or F Opposite T T
Bob T F T T or F
Carol F T T T

3○ Based on your answers to the previous two parts, does our knowledge base
entail f , contradict f , or is f contingent? And what should the answer to
our original question ”Does everyone work?” be?

Solution f is contingent. Answer should be ”maybe” or ”it depends”

6


