
Problem Session Week 4

Markov Decision Processes (MDPs)

Trevor Maxfield

maxfit@stanford.edu

Minae Kwon

minae@cs.stanford.edu

April 28th, 2023

CS 221 - Spring 2023, Stanford University

1/70

Reviewing Lecture Material

Reviewing Lecture Material

Defining an MDP

Algorithms for MDPs

Model-Based Methods for MDPs

Model-Free Methods for MDPs

Q-Learning and Function Approximators

Summary

2/70

Reviewing Lecture Material

Defining an MDP

3/70

Why Markov Decision Processes?

We don’t know... literally!

• In search (s, a)→ s ′ every time. Is that realistic?
• Consider walking home from the project session:

• 90% chance I go directly back to my office.

• 5% chance I see someone I know and stay and chat.

• 2% chance I go get a coffee.

• 1% chance my mom calls me and I’m on the phone for 10

minutes.

• 1% chance I stop to pet a dog.

•
...

• 0.000. . . 000001% chance the universe ceases to exist.

• How can we put this into our models, keeping the

state/action foundation we already have?

4/70

Why Markov Decision Processes?

We don’t know... literally!

• In search (s, a)→ s ′ every time. Is that realistic?
• Consider walking home from the project session:

• 90% chance I go directly back to my office.

• 5% chance I see someone I know and stay and chat.

• 2% chance I go get a coffee.

• 1% chance my mom calls me and I’m on the phone for 10

minutes.

• 1% chance I stop to pet a dog.

•
...

• 0.000. . . 000001% chance the universe ceases to exist.

• How can we put this into our models, keeping the

state/action foundation we already have?

4/70

Definition of an MDP

Definition
Markov Decision Process

• States: States S and starting state sstart ∈ S .

• Termination State: isEnd(s)

• Actions: a ∈ A(s), possible actions at s.

• Rewards: Reward(s, a, s ′), reward from (s, a, s ′) transition.

• Transitions: T (s, a, s ′), probability of s ′ if take a at s.

• (e)Discount: 0 ≤ γ ≤ 1: discount factor (default 1).

Test yourself: Is Search a special case of an MDP? (Yes, how?)

(Solution: See MDP Lecture 1 Slides 28-30)

5/70

Transition Probability Intuition

Which of the following is always true?

1.
∑

s∈S T (s, a, s ′) = 1

2.
∑

a∈A(s) T (s, a, s ′) = 1

3.
∑

s′∈S T (s, a, s ′) = 1

6/70

Transition Probability Intuition

Which of the following is always true?

1.
∑

s∈S T (s, a, s ′) ̸= 1

2.
∑

a∈A(s) T (s, a, s ′) ̸= 1

3.
∑

s′∈S T (s, a, s ′) = 1

6/70

Policy

Definition
A policy π is a mapping from each state s ∈ S to action a ∈ A(s).

π : s ∈ S → A(s)

Simply tells you what to do at every state. Doesn’t have to be

deterministic.

7/70

Policy

Example policy:

πmy cat Norbert(s = sees my arm) =

a1 = be nice with p = 1
2

a2 = bite it with p = 1
2

8/70

Utility vs Value

Following a policy yields a random path through the graph

(s0, a1, s1, a2, s2, . . .).

utility(path) =
∞∑
i=0

γ i Reward(si , ai+1, si+1)

Definition
The utility of a policy is the discounted sum of rewards on the

path (making it a random variable).

utility(π) =
∞∑
i=0

γ i Reward(si , π(si), si+1)

How does 0 ≤ γ ≤ 1 influence utility?

γ = 1 emphasizes future, γ = 0 the current reward.

9/70

Utility vs Value

Following a policy yields a random path through the graph

(s0, a1, s1, a2, s2, . . .).

utility(path) =
∞∑
i=0

γ i Reward(si , ai+1, si+1)

Definition
The utility of a policy is the discounted sum of rewards on the

path (making it a random variable).

utility(π) =
∞∑
i=0

γ i Reward(si , π(si), si+1)

How does 0 ≤ γ ≤ 1 influence utility?

γ = 1 emphasizes future, γ = 0 the current reward.

9/70

Utility vs Value

Definition
The value of a policy at a state s0 is the expected utility

Vπ(s0) = E

[∞∑
i=0

γ i Reward(si , π(si), si+1)

]

Where is the randomness?

T (s, a, s ′) and potentially π.

10/70

Utility vs Value

Definition
The value of a policy at a state s0 is the expected utility

Vπ(s0) = E

[∞∑
i=0

γ i Reward(si , π(si), si+1)

]

Where is the randomness?

T (s, a, s ′) and potentially π.

10/70

Value and Q-Value

Definition
Let Vπ(s) be the expected utility received by following policy π

from state s.

Definition
Let Qπ(s, a) be the expected utility of taking action a from state s,

and then following π.

11/70

Value and Q-Value

Understanding Qπ(s,a):

Remember that Qπ(s, a) is the expected utility of taking a from s

and then following π. Let’s break this up to our current step and

the future:

Qπ(s, a) =Expected reward of taking (s, a)

+ (discounted) expected future reward

Expectation (average) is just sum of probability times value! What

is the expected future reward? The value of the next state, Vπ(s
′).

Qπ(s, a) =
∑
s′

T (s, a, s ′)Reward(s, a, s ′) +
∑
s′

T (s, a, s ′)γVπ(s
′)

Vπ(s) is just Qπ(s, π(s)) (if s is not an end state).

12/70

Solving for Value

By breaking up value of a state into the current step and future

steps, we can get:

Vπ(s) =
∑
s′

T (s, π(s), s ′)
[
Reward(s, π(s), s ′) + γVπ(s

′)
]

Linear system of equations! (Think of Vπ(s) as a vector over the

states). However, too hard for lots of states, O(|S |3)!

Can we do this approximately in a way that converges to the exact

solution?

13/70

Reviewing Lecture Material

Algorithms for MDPs

14/70

Policy Evaluation

This is just V
(t)
π (s)← Q

(t−1)
π (s, π(s))!

15/70

Policy Evaluation

Repeat until value stops changing:

max
s∈S

∣∣∣V (t)
π (s)− V (t−1)

π (s)
∣∣∣ ≤ ϵ

Complexity O(tPESS
′). Why does this work? Fixed point and

contraction operator (CS 234).

16/70

https://web.stanford.edu/class/cs234/CS234Win2020/slides/lecture2_post.pdf

Optimal Value and Q-Values

All of our discussion so far considered the Value and Q-Value of a

specific policy. What if we want to optimize our value/policy?

Definition
The optimal value Vopt(s) is the maximum value attained by any

policy.

The optimal policy is still a policy!

Qopt(s, a) =
∑
s′

T (s, a, s ′)
[
Reward(s, a, s ′) + γVopt(s

′)
]

Optimal value:

Vopt(s) =

0 if IsEnd(s)

maxa∈A(s)Qopt(s, a) otherwise

17/70

Value Iteration

Remember that Vπ(s) was just Qπ(s, π(s)) (if not an end state):

Vπ(s) =

0 if IsEnd(s)

Qπ(s, π(s)) otherwise

Policy evaluation found the value of policy by

V (t)
π (s)← Q(t−1)

π (s, π(s))

How can we find the value of the optimal policy? Recall:

Vopt(s) =

0 if IsEnd(s)

maxa∈A(s)Qopt(s, a) otherwise

V
(t)
opt(s)← maxa∈A(s)Q

(t−1)
opt (s, a)

18/70

Value Iteration

Remember that Vπ(s) was just Qπ(s, π(s)) (if not an end state):

Vπ(s) =

0 if IsEnd(s)

Qπ(s, π(s)) otherwise

Policy evaluation found the value of policy by

V (t)
π (s)← Q(t−1)

π (s, π(s))

How can we find the value of the optimal policy? Recall:

Vopt(s) =

0 if IsEnd(s)

maxa∈A(s)Qopt(s, a) otherwise

V
(t)
opt(s)← maxa∈A(s)Q

(t−1)
opt (s, a)

18/70

Value Iteration

Cost: O(tVISAS
′)

19/70

Optimal Value and Q-Values

Value iteration gives us the value of the optimal policy (and by

extension Qopt). But what is the actual optimal policy?

At each state, what action maximizes Qopt:

πopt(s) = argmaxa∈A(s)Qopt(s, a)

20/70

Convergence

When do policy evaluation and value iteration work?

Discount γ < 1 or MDP graph is acyclic.

Counterexample? γ = 1 in a 0 reward cycle goes forever.

21/70

Reinforce Your Understanding

Policy evaluation: Takes an MDP + π and gives you Vπ.

Value iteration: Given an MDP get (Vopt,Qopt) =⇒ πopt.

22/70

Reviewing Lecture Material

Model-Based Methods for MDPs

23/70

Unknown Transitions and Rewards: RL

Wouldn’t it be nice if life gave you transition probabilities and

rewards?

What if we only have:

• Starting state and possible states.

• Actions at each state.

• Termination state.

• Discount factor.

No transition probabilities and rewards. Solution? Reinforcement

Learning.

24/70

MDS vs Reinforcement Learning

MDPs (offline)

• Have a mental model of

the world.

• Find policy to maximize

rewards collected.

RL (online)

• Don’t know how the

world works.

• Perform actions to find

out and collect rewards.

25/70

Model-Based Value Iteration

As they say, when life gives you no transition or reward

function, make your own!

Estimate the missing parts of the MDP (transition and rewards) by

exploring the world and use value iteration to find the optimal

policy. Hence ‘model-based value iteration’.

T̂ (s, a, s ′) =
|(s, a, s ′)|
|(s, a)|

R̂(s, a, s ′) = r from (s, a, r , s ′)

Q̂opt(s, a) =
∑
s′

T̂ (s, a, s ′)
[
R̂(s, a, s ′) + γV̂opt(s

′)
]

26/70

Model-Based Monte Carlo

How do we explore the space?

Can’t miss certain parts of the model (that deterministic π might).

Solution? Make sure we randomly explore the space, visiting states

infinitely often (in the limit).

Hence ‘Model-Based Monte Carlo’, randomly traverse the space.

(Ergodic theorem gives convergence of T̂ and R̂ even though the

data is not independent)

Why not just skip straight to Q?

27/70

Aside: On-Policy vs Off-Policy

Definition

On-Policy: estimate the value of a data-generating (exploration)

policy.

Definition

Off-Policy: estimate the value of another policy.

Model-Based Monte Carlo? Off-Policy. We explore the space

arbitrarily to find the optimal policy.

28/70

Reviewing Lecture Material

Model-Free Methods for MDPs

29/70

Model-Free Monte Carlo

In Model-Based Monte Carlo we estimated T̂ and R̂ and used

value iteration to compute Q̂opt. What if we just directly estimate

Q̂π(s, a)?

Model-Free Monte Carlo

Q̂π(st−1, at) should be the average of ut , with:

ut = rt + γrt+1 + γ2rt+2 + · · ·

So at (st−1), at) use the rest of the data to get ut .

30/70

Model-Free Monte Carlo

31/70

SARSA

Notice that reaching state-action pair (st−1, at) required

ut =
∑∞

i=0 γ
i rt+i , which is the sum until termination, just for a

single update. What if we updated every time we were at (s, a)?

SARSA For each tuple (s, a, r , s ′, a′) in the sequence of our

exploration (via π):

Q̂π(s, a)← (1− η)Q̂π(s, a) + η[r + γQ̂π(s
′, a′)]

Interpolate between observed data r and prediction.

Bootstrapping! (using the estimate of Q̂π rather than just raw

data). Biased but less variance.

32/70

Q-Learning

Model-Free Monte Carlo and SARSA only give Qπ. What about

Qopt?

We have one really good equation! Bellman Optimality Equation:

Qopt(s, a) =
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVopt(s

′)
]

Explore using some policy but learn the optimal policy (off-policy).

33/70

SARSA vs Q-Learning

34/70

Exploration/Exploitation Trade-off

In Q-Learning we need some policy to generate data while we

estimate another policy (the optimal one). Does any policy work?

• Too greedy (always picking the best action) and we won’t

explore everywhere.

• Too much exploring and we learn too slowly.

Solution? ϵ-greedy policy:

πact(s) =

argmaxa∈A(s)Q̂opt(s, a) probability 1− ϵ

random action from A(s) probability ϵ

Can decay ϵ over time, guarantees we explore and learn.

35/70

Reviewing Lecture Material

Q-Learning and Function Approximators

36/70

Q-Learning and SGD

We can frame Q-learning as:

Q̂opt(s, a)← Q̂opt(s, a)− η
[
Q̂opt(s, a)− (r + γV̂opt(s

′))
]

Where Q̂opt(s, a) is a prediction, and −(r + γV̂opt(s
′) is a target.

Looks like gradient descent (sorta).

Does Q̂opt(s, a) have any impact on Q̂opt(s
′, a′)?

No!

This is just independently memorizing values for (s, a) pairs. Are

the pairs truly independent?

37/70

Q-Learning and SGD

We can frame Q-learning as:

Q̂opt(s, a)← Q̂opt(s, a)− η
[
Q̂opt(s, a)− (r + γV̂opt(s

′))
]

Where Q̂opt(s, a) is a prediction, and −(r + γV̂opt(s
′) is a target.

Looks like gradient descent (sorta).

Does Q̂opt(s, a) have any impact on Q̂opt(s
′, a′)? No!

This is just independently memorizing values for (s, a) pairs. Are

the pairs truly independent?

37/70

Function Approximation

Do not forget: Q̂opt(s, a) just maps (s, a) to a value estimate.

Instead of having a large table of Q̂opt(s, a) (as we do currently),

we define a function:

Q̂opt(s, a;w) = w · ϕ(s, a)

38/70

Reviewing Lecture Material

Summary

39/70

Reinforce Your Understanding

Outputs Qopt (Off-Policy):

• Value Iteration: V
(t)
opt(s)← maxa∈A(s)Q

(t−1)
opt (s, a).

• Model-Based Value Iteration: Estimate T and R using

Monte Carlo, run value iteration using estimates T̂ and R̂.

• Q-Learning: Estimate Q̂opt(s, a) as an average of reward to

s ′ and estimated optimal max value of s ′.

Outputs Qπ (On-Policy):

• Policy Iteration: V
(t)
π ← Q

(t−1)
π (s, π(s)).

• Model-Free Monte Carlo: Estimate Q̂π by u.

• SARSA: Estimate Q̂π(s, a) by update (s, a, r , s ′, a′) and

previous Qπ(s, a).

40/70

Reinforce Your Understanding

Algorithm Estimating Based On

Model-Based Monte Carlo T̂ , R̂ =⇒ Q̂opt s0, a1, r1, s1, . . .

Model-Free Monte Carlo Q̂π u

SARSA Q̂π r + Q̂π

Q-Learning Q̂opt r + Q̂opt

41/70

Problem 0: Choosing an Algorithm

Problem 0: Choosing an Algorithm

42/70

Choosing an Algorithm

On each of the following slides we are going to choose an

algorithm to solve a given problem. Choose from:

• Model-Based Monte Carlo.

• Q-Learning

• Model-Free Monte Carlo.

• SARSA

There may be more than one right answer.

43/70

Expensive Experiments

You work in a chemistry lab that is conducting some extremely

expensive experiments. Unfortunately, sometimes the actions you

take cause non-deterministic outcomes (due to unobservable

factors), and your reaction transitions to a different state

randomly. Your team has several different strategies they’d like to

test for running these experiments, but you don’t have enough

budget for lots of trials. Fortunately, the number of states and

possible actions are relatively small, and you have detailed notes on

many past experiments run. What should you do and why?

Model-Based Monte Carlo would let us simulate many strategies

(policies) using old and new data by generating T̂ and R̂ before

using Policy Iteration.

44/70

Expensive Experiments

You work in a chemistry lab that is conducting some extremely

expensive experiments. Unfortunately, sometimes the actions you

take cause non-deterministic outcomes (due to unobservable

factors), and your reaction transitions to a different state

randomly. Your team has several different strategies they’d like to

test for running these experiments, but you don’t have enough

budget for lots of trials. Fortunately, the number of states and

possible actions are relatively small, and you have detailed notes on

many past experiments run. What should you do and why?

Model-Based Monte Carlo would let us simulate many strategies

(policies) using old and new data by generating T̂ and R̂ before

using Policy Iteration.

44/70

Poker-Playing Roommates

Your roommate Valentin seems to win a lot of money playing poker

against his friends. Based on what you know about him, you’ve

got some ideas for strategies against him, but you’re concerned

you’ll lose to his friends by tailoring your strategy to him. You

decide to build a poker bot to test your strategies against random

players online. You choose your reward to be how much you win at

the end of a round. Which algorithm should you use and why?

Model-Free Monte Carlo is a good choice since we only get a

reward at the terminal state, meaning that SARSA updates would

be slower. Since we are testing specific policies we need an

on-policy algorithm.

45/70

Poker-Playing Roommates

Your roommate Valentin seems to win a lot of money playing poker

against his friends. Based on what you know about him, you’ve

got some ideas for strategies against him, but you’re concerned

you’ll lose to his friends by tailoring your strategy to him. You

decide to build a poker bot to test your strategies against random

players online. You choose your reward to be how much you win at

the end of a round. Which algorithm should you use and why?

Model-Free Monte Carlo is a good choice since we only get a

reward at the terminal state, meaning that SARSA updates would

be slower. Since we are testing specific policies we need an

on-policy algorithm.

45/70

Monte Catlo?

You decide to foster a cat, Monte, from the local

Humane Society. Unfortunately, Monte is quite

skittish and really likes the dark. As such, he won’t

get out from under your bed. You’ve assembled an

arsenal of treats, toys, and trinkets to try and lure

out Monte. Some things seem to pique his interest,

but he won’t seem to come out. You’re pretty sure

that presenting him with the right order of items at

the right time of day might convince him to come

out. Which algorithm could you use?

Q-Learning would work well here, since we’d like to learn an

optimal policy (get Monte out from under the bed), and have no

idea how he reacts to things. Alternatively, Monte Carlo (:

46/70

Monte Catlo?

You decide to foster a cat, Monte, from the local

Humane Society. Unfortunately, Monte is quite

skittish and really likes the dark. As such, he won’t

get out from under your bed. You’ve assembled an

arsenal of treats, toys, and trinkets to try and lure

out Monte. Some things seem to pique his interest,

but he won’t seem to come out. You’re pretty sure

that presenting him with the right order of items at

the right time of day might convince him to come

out. Which algorithm could you use?

Q-Learning would work well here, since we’d like to learn an

optimal policy (get Monte out from under the bed), and have no

idea how he reacts to things. Alternatively, Monte Carlo (:

46/70

Monopoly

For your CS 221 project you decide to build a bot to play

Monopoly. After coding up all of the states, (pieces on the board,

how much money each player has, etc.) you decide to train with

Model-Free Monte Carlo. After using all of your compute credits,

you realize that nearly every entry in your table that stores Q̂(s, a)

is empty (how you made a table that big is besides the point).

How can you fix this?

Q-Learning with function approximation would help here. Two

states that differ by only a small amount (say how much money

you have, $100 vs $110) probably have similar Q̂ values. Using a

function approximation would allow for generalization to unseen

state action pairs.

47/70

Monopoly

For your CS 221 project you decide to build a bot to play

Monopoly. After coding up all of the states, (pieces on the board,

how much money each player has, etc.) you decide to train with

Model-Free Monte Carlo. After using all of your compute credits,

you realize that nearly every entry in your table that stores Q̂(s, a)

is empty (how you made a table that big is besides the point).

How can you fix this?

Q-Learning with function approximation would help here. Two

states that differ by only a small amount (say how much money

you have, $100 vs $110) probably have similar Q̂ values. Using a

function approximation would allow for generalization to unseen

state action pairs.

47/70

Problem 1: Riding the Bus

Problem 1: Riding the Bus

Identifying an MDP

Finding Policy Value

Q Learning

Other Policies and Algorithms

48/70

Problem 1: Riding the Bus

Identifying an MDP

49/70

Identifying an MDP

Norbert wants to go from their house (located at 1) to the gym

(located at n). At each location s, they can either (i)

deterministically walk forward to the next location s + 1 (takes 1

unit of time) or (ii) wait for the bus. The bus comes with

probability ϵ, in which case, they will reach the gym in

1 + α(n − s) units of time, where α is some parameter. If the bus

doesn’t come, well, they stay put, and that takes 1 unit of time.

Figure 1: Norbert’s Path
50/70

Identifying an MDP

How can we model this as an MDP?

• S

• T

• A

• R

• T

51/70

Identifying an MDP

How can we model this as an MDP?

• States

• Termination State

• Actions

• Rewards

• Transitions

52/70

Identifying an MDP

How can we model this as an MDP?

• States:

s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:

53/70

Identifying an MDP

How can we model this as an MDP?

• States: s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State:

1[s = n]

• Actions: {Walk, Bus}
• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:

53/70

Identifying an MDP

How can we model this as an MDP?

• States: s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State: 1[s = n]

• Actions:

{Walk, Bus}
• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:

53/70

Identifying an MDP

How can we model this as an MDP?

• States: s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:

53/70

Identifying an MDP

How can we model this as an MDP?

• States: s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:

53/70

Identifying an MDP

How can we model this as an MDP?

• States: s ∈ {1, 2, . . . , n}, Norbert’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards: Reward(s, a, s ′)

• Transitions:

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

54/70

Problem 1: Riding the Bus

Finding Policy Value

55/70

Finding Policy Value

Compute a closed form expression for the value of the “always

walk” policy and the “always wait for the bus” policy (using some

or all of the variables ϵ, α, n). Assume a discount rate of γ = 1.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

VWalk(s) =

VBus(s) =

56/70

Finding Policy Value

Compute a closed form expression for the value of the “always

walk” policy and the “always wait for the bus” policy (using some

or all of the variables ϵ, α, n). Assume a discount rate of γ = 1.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

VWalk(s) = −(n − s)

VBus(s) =

56/70

Finding Policy Value

Compute a closed form expression for the value of the “always

walk” policy and the “always wait for the bus” policy (using some

or all of the variables ϵ, α, n). Assume a discount rate of γ = 1.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

VWalk(s) = −(n − s)

VBus(s) = ϵ(−1− α(n − s)) + (1− ϵ)(−1 + VBus(s))

56/70

Finding Policy Value

Compute a closed form expression for the value of the “always

walk” policy and the “always wait for the bus” policy (using some

or all of the variables ϵ, α, n). Assume a discount rate of γ = 1.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

VWalk(s) = −(n − s)

VBus(s) = −α(n − s)− ϵ−1

56/70

Finding Policy Value

For what values of ϵ (as a function of α and n) is it advantageous

to walk rather than take the bus?

VWalk(s) = −(n − s) VBus(s) = −α(n − s)− 1

ϵ

For walking to be preferable we need:

VWalk(s) ≥ VBus(s):

n − s ≤ α(n − s) +
1

ϵ

(1− α)(n − s) ≤ 1

ϵ

Which leads to: ϵ ≤ 1
(1−α)(n−s) α < 1

ϵ > 0 α ≥ 1

57/70

Finding Policy Value

For what values of ϵ (as a function of α and n) is it advantageous

to walk rather than take the bus?

VWalk(s) = −(n − s) VBus(s) = −α(n − s)− 1

ϵ

For walking to be preferable we need: VWalk(s) ≥ VBus(s):

n − s ≤ α(n − s) +
1

ϵ

(1− α)(n − s) ≤ 1

ϵ

Which leads to: ϵ ≤ 1
(1−α)(n−s) α < 1

ϵ > 0 α ≥ 1

57/70

Finding Policy Value

For what values of ϵ (as a function of α and n) is it advantageous

to walk rather than take the bus?

VWalk(s) = −(n − s) VBus(s) = −α(n − s)− 1

ϵ

For walking to be preferable we need: VWalk(s) ≥ VBus(s):

n − s ≤ α(n − s) +
1

ϵ

(1− α)(n − s) ≤ 1

ϵ

Which leads to: ϵ ≤ 1
(1−α)(n−s) α < 1

ϵ > 0 α ≥ 1

57/70

Problem 1: Riding the Bus

Q Learning

58/70

Q Learning

Due to bureaucracy, Norbert’s town is unable to provide them with

transition probabilities or a reward function (i.e. a bus schedule).

To solve this, Norbert decides to use reinforcement learning,

specifically Q-learning to determine the best policy. Norbert starts

going around town both by bus and by walking, recording the

following data:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

59/70

Q Learning

Run the Q-learning algorithm once over the given data to compute

an estimate of the optimal Q-value Qopt(s, a). Process the

episodes from left to right, assume all Q-values are initialized to

zero, and use a learning rate of η = 0.5 and a discount of γ = 1.

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

60/70

Q Learning

Recall the Q-learning update:

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r + γ max
a′∈Action(s′)

Q̂opt(s
′, a′))

With η = 0.5 and γ = 1.

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Find Q̂(s, a) for s = 1, 2, 3, 4 and a ∈ {Bus,Walk}.

61/70

Q Learning

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Q̂opt(s, a)←
1

2
Q̂opt(s, a) +

1

2
(r + max

a′∈Action(s′)
Q̂opt(s

′, a′))

Using the updates:

(1,Bus,−1, 1) :

Q̂(1,Bus) = 0.5(0) + 0.5(−1 + 1max(0, 0)) = −0.5

(1,Bus,−1, 1) :

Q̂(1,Bus) = 0.5(−0.5) + 0.5(−1 + 1(max(0,−0.5))) = −0.75

(1,Bus, 3, 3) :

Q̂(1,Bus) = 0.5(−0.75) + 0.5(3 + 1(max(0, 0))) = 1.125

(3,Walk, 1, 4) :

Q̂(3,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

(4,Walk, 1, 5) :

Q̂(4,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

All other Q̂(s, a) = 0.

62/70

Q Learning

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Q̂opt(s, a)←
1

2
Q̂opt(s, a) +

1

2
(r + max

a′∈Action(s′)
Q̂opt(s

′, a′))

Using the updates:

(1,Bus,−1, 1) : Q̂(1,Bus) = 0.5(0) + 0.5(−1 + 1max(0, 0)) = −0.5

(1,Bus,−1, 1) : Q̂(1,Bus) = 0.5(−0.5) + 0.5(−1 + 1(max(0,−0.5))) = −0.75

(1,Bus, 3, 3) : Q̂(1,Bus) = 0.5(−0.75) + 0.5(3 + 1(max(0, 0))) = 1.125

(3,Walk, 1, 4) : Q̂(3,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

(4,Walk, 1, 5) : Q̂(4,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

All other Q̂(s, a) = 0.

62/70

Problem 1: Riding the Bus

Other Policies and Algorithms

63/70

Choose a Different Algorithm

After using Q-learning, Norbert wants to try a different algorithm

to compute Q̂. They consider SARSA, Model-Free Monte Carlo,

and Model-Based Monte Carlo with Value Iteration. Which of

these can Norbert use to compute the optimal policy? Explain

why.

Model-Based Monte Carlo. SARSA and Mode-Free Monte Carlo

are on policy, can only give you the value of a specific policy, not

the optimal one.

64/70

Choose a Different Algorithm

After using Q-learning, Norbert wants to try a different algorithm

to compute Q̂. They consider SARSA, Model-Free Monte Carlo,

and Model-Based Monte Carlo with Value Iteration. Which of

these can Norbert use to compute the optimal policy? Explain

why.

Model-Based Monte Carlo. SARSA and Mode-Free Monte Carlo

are on policy, can only give you the value of a specific policy, not

the optimal one.

64/70

Free Bus Ride

Norbert’s job decided to start subsidizing their bus pass. Norbert

decides that for states s < 3
4n they will take the bus and for states

s ≥ 3
4n they will walk. Write down a policy function π(s) to

represent this.

The policy is

π(s) =

Bus if s < 3
4n

Walk if s ≥ 3
4n

65/70

Free Bus Ride

Norbert’s job decided to start subsidizing their bus pass. Norbert

decides that for states s < 3
4n they will take the bus and for states

s ≥ 3
4n they will walk. Write down a policy function π(s) to

represent this.

The policy is

π(s) =

Bus if s < 3
4n

Walk if s ≥ 3
4n

65/70

Free Bus Ride

Norbert wants to know how long their expected commute will be.

Should they use Q-Learning, SARSA, or Model-Free Monte Carlo

to compute that, and why? Will the algorithm converge to the

correct Q̂π(s, a) for all states after going to work enough times?

(recall that the starting state is s = 1 and assume n > 1).

Q-Learning will not work in this case since it computes the optimal

policy. The other two will only update Q̂π(1,Bus) since starting

state is s = 1 and π(1) = Bus.

66/70

Free Bus Ride

Norbert wants to know how long their expected commute will be.

Should they use Q-Learning, SARSA, or Model-Free Monte Carlo

to compute that, and why? Will the algorithm converge to the

correct Q̂π(s, a) for all states after going to work enough times?

(recall that the starting state is s = 1 and assume n > 1).

Q-Learning will not work in this case since it computes the optimal

policy. The other two will only update Q̂π(1,Bus) since starting

state is s = 1 and π(1) = Bus.

66/70

Convergence Issues

Why is there (potentially) a convergence problem in this situation?

How can Norbert change their policy to π′ so that V̂π′(s)

converges for all states?

The current policy will only generate data at state s = 1. Their π

needs to visit all of the states, can be non-deterministic.

67/70

Convergence Issues

Why is there (potentially) a convergence problem in this situation?

How can Norbert change their policy to π′ so that V̂π′(s)

converges for all states?

The current policy will only generate data at state s = 1. Their π

needs to visit all of the states, can be non-deterministic.

67/70

Getting to the Gym on Time

Now that Norbert understands on vs off policy learning, they

consider their attempt at Q-learning from part (b). They’d like to

generate more data, but still get to the gym in a reasonable

amount of time. What kind of policy would do this while

guaranteeing convergence?

ϵ-greedy policy would balance the two goals and guarantee

convergence (we’d visit every state infinitely often!)

68/70

Getting to the Gym on Time

Now that Norbert understands on vs off policy learning, they

consider their attempt at Q-learning from part (b). They’d like to

generate more data, but still get to the gym in a reasonable

amount of time. What kind of policy would do this while

guaranteeing convergence?

ϵ-greedy policy would balance the two goals and guarantee

convergence (we’d visit every state infinitely often!)

68/70

Bonus: Another MDP

Bonus: Another MDP

69/70

Speedbumps

See problem 3 in the handout.

70/70

	Reviewing Lecture Material
	Defining an MDP
	Algorithms for MDPs
	Model-Based Methods for MDPs
	Model-Free Methods for MDPs
	Q-Learning and Function Approximators
	Summary

	Problem 0: Choosing an Algorithm
	Problem 1: Riding the Bus
	Identifying an MDP
	Finding Policy Value
	Q Learning
	Other Policies and Algorithms

	Bonus: Another MDP

