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Variable-Based Models

Search, MDPs, and games are state-based models. CSPs are
variable-based models. Think in terms of variables (x;), factors
(f;), and weights.

Solution to problems are assignments to variables. Use inference to
make decisions (algorithms do more work now, compare to search
where states did work).
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Factor Graphs

Definition
Factor Graph

e Variables: X = (Xi,...,X,) where X; € Domain;
Factors: fi,..., fm, with each f;(X) > 0.

e How good is assignment X

Scope of factor f;: set of variables it depends on.

Arity of f;: number of variables in scope.

e Unary (1 variables); Binary (2 variables)

Constraints: factors that return 0 or 1.
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Assignment Weights

Definition
Assignment Weight: Every assignment x = (xg,...,x,) has

weight
Weight(x) = [ ] fi(x)

j=1

e Consistent if Weight(x) > 0.
e A CSP is satisfiable if max, Weight(x) > 0.
Objective: Find the maximum weight assignment:

argmax, Weight(x)
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Test Your Understanding

If a CSP has an assignment X such that Weight(X) = 5, is the CSP
satisfiable? Recall that a CSP is satisfiable if

max Weight(x) > 0
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Test Your Understanding

If a CSP has an assignment X such that Weight(X) = 5, is the CSP
satisfiable? Recall that a CSP is satisfiable if

max Weight(x) > 0

Yes, X implies that the weight of the maximizing x is greater than

ZEro.
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Test Your Understanding

If a CSP has a factor £(x) = 0 for all x, is the CSP satisfiable?
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Test Your Understanding

If a CSP has a factor £(x) = 0 for all x, is the CSP satisfiable?

No, the weight is the product of all factors and fis always zero.

Hence the weight will always be zero.
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Dependent Factors

Definition
Dependent Factors: D(x, X;) is the set of factors depending on

Xi (a single variable) and x (partial assignment) but not on
unassigned variables.

e If you have assigned x; and x in x, then D(x, X3) will be all
factors that depend on x3 and one/both of x; and x.

e i.e. if we want to assign x3 next, what constraints (factors) are
relevant?

e |dea: choose x3 to satisfy all factors in D(x, X3)!
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Backtracking Search

Backtrack(x,w,Domains):

e If x is completely assigned, check if best and return.

Choose unassigned variable X; (component in x)

Order Domain; (corresponds to chosen Xj)

For each v € Domain;:

e Compute value of newly resolvable factors, setting x; = v:
§= H filxU{X:v})
ED(x,X;)

e If § =07 Continue (at least one factor not satisfied).
e (Optional) Shrink domain to Domains’ (Lookahead).

e If any Domains] is empty, continue.

e Backtrack(x U {X; : v}, wd, Domains’)
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Lookahead

Forward Checking (One-Step Lookahead)

e We consider an assignment for variable X;.

e We can remove any values from neighbors of X; that would
violate factors. If any of these neighboring domains become
empty, no solution, can skip this assignment.

e Note that these ‘neighbors’ are only X; that are not assigned in
X.

Example: xi, x2, and x3. Domain is {—1,0,1}. Constraints
f(x) = x1xa = —1. See that choosing x; = 0 leads to an empty
lookahead domain for x».
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Backtracking Search

Backtrack(x,w,Domains):

e If x is completely assigned, check if best and return.

Choose unassigned variable X;j (component in x)

Order Domain; (corresponds to chosen X;)

For each v € Domain;:

e Compute value of newly resolvable factors, setting x; = v:
§= H filxU{X:v})
ED(x,X;)

e If § =07 Continue (at least one factor not satisfied).
e (Optional) Shrink domain to Domains’ (Lookahead).

e If any Domains] is empty, continue.

e Backtrack(x U {X; : v}, wd, Domains’)
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Variable Choices

Choosing Unassigned Variable:

e Choose the variable with the smallest domain.

e Heuristic - most constrained (smaller branching factors)

Ordering Domain;;:

e What order do we try values of X;?

e Try the ones with the largest number of consistent values of
neighboring variables.

e i.e. descending order of total size of possible consistent
options for neighbors after selecting x; = v.

e Impose fewest constraints on neighbors.
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Arc Consistency

Definition
Arc Consistency: A variable X; is arc consistent with respect to

X; if for each x; € Domain; there exists x; € Domain; such that
F({Xi = xi, Xj - x}) # 0
for all f whose scope contains X; and X;

If there is some choice for X; that has no viable X;, we don't need
it! Can use this to shrink domain in lookahead.
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-8 Algorithm: AC-3

While S is non-empty:
Remove any X; from §S.
For all neighbors X; of X;:
Enforce arc consistency on X; w.rt. X;.
If Domain; changed, add X to S.

Be careful, this is only a local view!
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Greedy search is like DFS, but choose the assignment that gives
the largest weight and explore from there.

o Will finish in |X| steps.
e Cannot guarantee optimal whatsoever.

e Compromise: Greedy DFS but keep track of K best
candidates at each depth.

e Still not guaranteed, but better!
Denote the size of the beam as K. Then:

e K =1Iis what?
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Greedy search is like DFS, but choose the assignment that gives
the largest weight and explore from there.

o Will finish in |X| steps.
e Cannot guarantee optimal whatsoever.

e Compromise: Greedy DFS but keep track of K best
candidates at each depth.

e Still not guaranteed, but better!
Denote the size of the beam as K. Then:

e K =1 is what? Greedy
e K = oo is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.
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Local Search

Backtracking and beam search build up assignments. Funnily
enough, backtracking can't ‘backtrack’ information found deeper
in a tree to earlier assignments. If we reach a state that would be
feasible with just one variable change earlier, nothing we can do.

Solution: Local Search.
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Local Search

Consider a completed assignment x. Try to improve it.

e |ocality: To re-assign X;, only need to consider factors that

depend on X;.
e |terated Conditional Modes (ICM) For each variable, try all
feasible re-assignments and pick the one with the highest wait.
e Keep looping to convergence.

e Not guaranteed optimal, local minima.

e However, Weight(x) does monotonically increase.
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To solve CSPs we use variations of backtracking.

e Can use one-step lookahead to reduce domains after assigning
a variable.

e Heuristics for choosing which variable to assign next, and what
order to consider the values in the domain of that variable.

e Arc Consistency (AC-3) reduces domains to be consistent
before starting the problem.

e Beam Search reduces the number of things to try in
backtracking (branching) but decreases accuracy.

e local Search given an assignment, iteratively try to improve it.
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Algorithms

Algorithm Strategy Optimality Time Complexity
Backtracking  Extend partial assignment Exact exponential
Beam Search  Extend partial assignment Approximate linear

Local Search  Modify complete assignment  Approximate linear
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