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Variable-Based Models

Search, MDPs, and games are state-based models. CSPs are

variable-based models. Think in terms of variables (xi ), factors

(fi ), and weights.

x1 x2 x3

f1 f2 f3 f4

Solution to problems are assignments to variables. Use inference to

make decisions (algorithms do more work now, compare to search

where states did work).
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Factor Graphs

Definition
Factor Graph

• Variables: X = (X1, . . . ,Xn) where Xi ∈ Domaini

• Factors: f1, . . . , fm, with each fj(X ) ≥ 0.

• How good is assignment X

x1 x2 x3

f1 f2 f3 f4

• Scope of factor fj : set of variables it depends on.

• Arity of fj : number of variables in scope.

• Unary (1 variables); Binary (2 variables)

• Constraints: factors that return 0 or 1.
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Assignment Weights

Definition
Assignment Weight: Every assignment x = (x1, . . . , xn) has

weight

Weight(x) =
m∏
j=1

fj(x)

• Consistent if Weight(x) > 0.

• A CSP is satisfiable if maxx Weight(x) > 0.

Objective: Find the maximum weight assignment:

argmaxxWeight(x)
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Test Your Understanding

If a CSP has an assignment x̂ such that Weight(x̂) = 5, is the CSP

satisfiable? Recall that a CSP is satisfiable if

max
x

Weight(x) > 0

Yes, x̂ implies that the weight of the maximizing x is greater than

zero.
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Test Your Understanding

If a CSP has a factor f̂ (x) = 0 for all x , is the CSP satisfiable?

No, the weight is the product of all factors and f̂ is always zero.

Hence the weight will always be zero.
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Dependent Factors

Definition
Dependent Factors: D(x ,Xi ) is the set of factors depending on

Xi (a single variable) and x (partial assignment) but not on

unassigned variables.

• If you have assigned x1 and x2 in x , then D(x ,X3) will be all
factors that depend on x3 and one/both of x1 and x2.

• i.e. if we want to assign x3 next, what constraints (factors) are

relevant?

• Idea: choose x3 to satisfy all factors in D(x ,X3)!
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Backtracking Search

Backtrack(x ,w ,Domains):

• If x is completely assigned, check if best and return.

• Choose unassigned variable Xi (component in x)

• Order Domaini (corresponds to chosen Xi )

• For each v ∈ Domaini :

• Compute value of newly resolvable factors, setting xi = v :

δ =
∏

fj∈D(x,Xi )

fj(x ∪ {Xi : v})

• If δ = 0? Continue (at least one factor not satisfied).

• (Optional) Shrink domain to Domains′ (Lookahead).

• If any Domains′i is empty, continue.

• Backtrack(x ∪ {Xi : v},wδ,Domains′)
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Lookahead

Forward Checking (One-Step Lookahead)

• We consider an assignment for variable Xi .

• We can remove any values from neighbors of Xi that would
violate factors. If any of these neighboring domains become
empty, no solution, can skip this assignment.

• Note that these ‘neighbors’ are only Xj that are not assigned in

x .

Example: x1, x2, and x3. Domain is {−1, 0, 1}. Constraints
f (x) = x1x2 = −1. See that choosing x1 = 0 leads to an empty

lookahead domain for x2.
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Variable Choices

Choosing Unassigned Variable:

• Choose the variable with the smallest domain.

• Heuristic - most constrained (smaller branching factors)

Ordering Domaini :

• What order do we try values of Xi?

• Try the ones with the largest number of consistent values of

neighboring variables.

• i.e. descending order of total size of possible consistent

options for neighbors after selecting xi = v .

• Impose fewest constraints on neighbors.
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Arc Consistency

Definition
Arc Consistency: A variable Xi is arc consistent with respect to

Xj if for each xi ∈ Domaini there exists xj ∈ Domainj such that

f ({Xi : xi ,Xj : xj}) ̸= 0

for all f whose scope contains Xi and Xj

If there is some choice for Xi that has no viable Xj , we don’t need

it! Can use this to shrink domain in lookahead.

15/22



AC-3

Be careful, this is only a local view!
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Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what?

Greedy

• K = ∞ is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.

17/22



Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what? Greedy

• K = ∞ is what?

BFS

Beam search is like a pruned BFS. Backtracking is DFS.

17/22



Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what? Greedy

• K = ∞ is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.

17/22



Local Search

Backtracking and beam search build up assignments. Funnily

enough, backtracking can’t ‘backtrack’ information found deeper

in a tree to earlier assignments. If we reach a state that would be

feasible with just one variable change earlier, nothing we can do.

Solution: Local Search.
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Local Search

Consider a completed assignment x . Try to improve it.

• Locality: To re-assign Xi , only need to consider factors that

depend on Xi .

• Iterated Conditional Modes (ICM) For each variable, try all

feasible re-assignments and pick the one with the highest wait.

• Keep looping to convergence.

• Not guaranteed optimal, local minima.

• However, Weight(x) does monotonically increase.
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Summary

To solve CSPs we use variations of backtracking.

• Can use one-step lookahead to reduce domains after assigning

a variable.

• Heuristics for choosing which variable to assign next, and what

order to consider the values in the domain of that variable.

• Arc Consistency (AC-3) reduces domains to be consistent

before starting the problem.

• Beam Search reduces the number of things to try in

backtracking (branching) but decreases accuracy.

• Local Search given an assignment, iteratively try to improve it.
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Algorithms

Algorithm Strategy Optimality Time Complexity

Backtracking Extend partial assignment Exact exponential

Beam Search Extend partial assignment Approximate linear

Local Search Modify complete assignment Approximate linear
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