## **Problem Session Week 7**

Trevor Maxfield maxfit@stanford.edu

Minae Kwon
minae@cs.stanford.edu

May 19th, 2023

CS 221 - Spring 2023, Stanford University

## **Reviewing Lecture Material**

## Reviewing Lecture Material

Markov Networks and Gibbs Sampling

Bayesian Networks

Summary

#### **Problems**



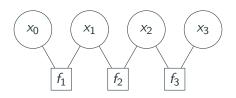
# **Reviewing Lecture Material**

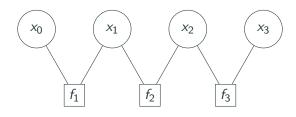
Markov Networks and Gibbs Sampling

- Connecting factor graphs (CSPs, last week) with probability.
- In CSPs we found the **maximum weight assignment**:

$$\max_{x \in X} Weight(x) = \max_{x \in X} \prod_{j=1}^{m} f_j(x)$$

• Return a single x, no sense of how *likely* this x is.



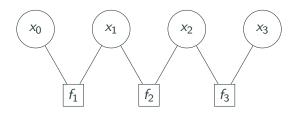


Let the domain of all  $X_j$  be  $\{0, 1, 2, 3\}$ . Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any  $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$  is a satisfying assignment.

How many valid assignments?

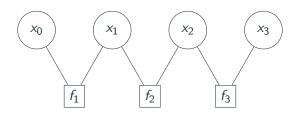


Let the domain of all  $X_j$  be  $\{0, 1, 2, 3\}$ . Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any  $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$  is a satisfying assignment.

How many valid assignments? 6 How many possible assignments?

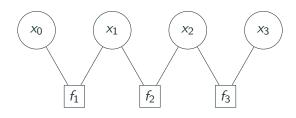


Let the domain of all  $X_j$  be  $\{0, 1, 2, 3\}$ . Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any  $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$  is a satisfying assignment.

How many valid assignments? 6
How many possible assignments? 4<sup>4</sup>



Let the domain of all  $X_j$  be  $\{0,1,2,3\}$ . Define

$$f_i(x) = (4 - \underbrace{x_i})[x_i \ge i \ \land \ x_{i-1} \ge i]$$

Satisfying assignments aren't changed. But max weight is 6 with x=(1,2,3,3). How do we represent uncertainty about this assignment/weight?

#### **Markov Network Definition**

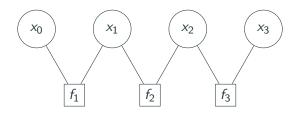
#### **Definition**

Markov Network: A factor graph which defines a joint distribution over random variables  $X = (X_1, \dots, X_n)$ :

$$\mathbb{P}(X = x) = \frac{\mathsf{Weight}(x)}{\sum_{x'} \mathsf{Weight}(x')}$$

How much of the total weight possible weight is allocated in x? We can **choose** to let this represent uncertainty.

## **Markov Network Definition**



Let the domain of all  $X_j$  be  $\{0, 1, 2, 3\}$ .

$$f_i(x) = (4 - x_i)[x_i \ge i \land x_{i-1} \ge i] \quad X_j \in \{0, 1, 2, 3\}$$

| <i>X</i> <sub>0</sub> | $x_1$ | <i>X</i> 2 | <i>X</i> 3 | W(x) | $\mathbb{P}(x)$ |
|-----------------------|-------|------------|------------|------|-----------------|
| 1                     | 2     | 3          | 3          | 6    | 0.33            |
| 2                     | 2     | 3          | 3          | 4    | 0.22            |
| 3                     | 2     | 3          | 3          | 2    | 0.11            |
| 1                     | 3     | 3          | 3          | 3    | 0.166           |
| 2                     | 3     | 3          | 3          | 2    | 0.11            |
| 3                     | 3     | 3          | 3          | 1    | 0.055           |

← □
← □
← □
← □
← □
← □
← □

୬९୯ 8/26

## Marginal Probabilities

#### **Definition**

The **marginal probability** of  $X_i = v$  is given by:

$$\mathbb{P}(X_i = v) = \sum_{x: x_i = v} \mathbb{P}(X = x)$$

The probability that a given entry  $X_i = v$  is just the sum over all assignments where  $x_i = v$ . Alternatively you might recognize this as:

$$\mathbb{P}(X_i = v) = \sum \mathbb{P}(X = x | X_i = v)$$

Allows us to focus on the *probability of single variables* in satisfying assignments.

## **Gibbs Sampling**

What to do if too many possible assignments?

- Initialize x to a random complete assignment.
- Loop through variables i = 1, ..., n until convergence.
  - Compute  $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$  for all  $v \in \mathsf{Domain}_i$
  - Set  $x_i = v$  with probability  $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$
  - Increment count<sub>i</sub>(x<sub>i</sub>
- Estimate  $\hat{\mathbb{P}}(X_i = x_i) = \frac{\text{count}_i(x_i)}{\sum_{v \in \text{Domain}_i} \text{count}_i(v)}$

Tricky step: "Compute  $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$  for all  $v \in \mathsf{Domain}_i$ ".

## Gibbs Sampling

Note that:

$$\mathbb{P}(X_i = v | X_{-i} = x_{-i}) = \frac{\text{Weight}(x_{-i} \cup \{X_i : v\})}{Z\mathbb{P}(X_{-i} = x_{-i})}$$

Not helpful in this form! Still need Z and  $\mathbb{P}(X_{-i} = x_{-i})$  (expensive)!

How is  $\mathbb{P}(X_{-i} = x_{-i})$  calculated from weights though?

$$\mathbb{P}(X_{-i} = x_{-i}) = \frac{\sum_{v} \mathsf{Weight}(x_{-i} \cup \{X_i : v\})}{Z}$$

Eureka! Fix  $x_{-i}$  and get proportion of weight made up by each v:

$$\mathbb{P}(X_i = v | X_{-i} = x_{-i}) = \frac{\mathsf{Weight}(x_{-i} \cup \{X_i : v\})}{\sum_{v} \mathsf{Weight}(x_{-i} \cup \{X_i : v\})}$$

Need to compute each Weight $(x_{-i} \cup \{X_i : v\})$  anyways, free!

# **Reviewing Lecture Material**

## **Bayesian Networks**

## Bayesian Networks

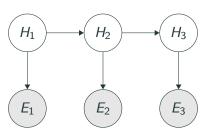
Markov networks but factors have more meaning. Both define joint probability distributions over assignments.

#### **Markov Networks**

Arbitrary factors
Set of preferences

## **Bayesian Networks**

Local conditional probabilities Generative process



## **Probability Review**

Given 
$$X = (X_1, \ldots, X_n)$$

- Joint distribution:  $\mathbb{P}(X = x)$ 
  - Maps each event x to its probability.
- Marginal distribution:  $\mathbb{P}(X_i = x_i)$ 
  - Probability of observing i-th variable as  $x_i$ .
  - Marginalize out other X<sub>−i</sub>.
- Conditional distribution:  $\mathbb{P}(X_i = x_i \mid X_j = x_j)$ 
  - Given knowledge of  $x_j$ 's occurrence (can be any number of other variables), what is the probability of observing  $X_i = x_i$ ?

Example 
$$X = (X_1, X_2, X_3, X_4)$$

$$\mathbb{P}(X_1 \mid X_3 = x_3, X_4 = x_4)$$

Distribution of  $X_1$  given that we **marginalize out**  $X_2$  and condition on knowledge of  $X_3$  and  $X_4$ .

## Bayesian Network

#### **Definition**

Let  $X = (X_1, ..., X_n)$  be random variables. A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i | x_{\mathsf{Parents}(i)})$$

Note that lowercase p is used to denote *local* conditional distribution (only conditioning on parents), which is specified as part of the network.

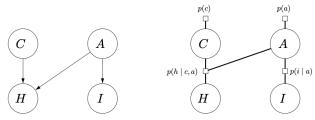
How can we use Bayesian networks?

Remember that the network is just a computable representation of  $\mathbb{P}(X_1,\ldots,X_n)$ , where we indicate interactions between variables as dependencies.

Given some evidence  $e = E \subseteq X$ , we query  $Q \subseteq X$ . Then we'd like:

$$\mathbb{P}(Q|E=e) \longleftrightarrow \mathbb{P}(Q=q|E=e)$$
 for all values  $q$ 

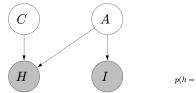
How do we compute? We'll see a similar trick as in Markov networks!



$$\mathbb{P}(C = c, A = a, H = h, I = i) = \frac{1}{Z}p(c)p(a)p(h \mid c, a)p(i \mid a)$$

Bayesian network = Markov network with normalization constant  $Z=1\,$ 

Simply using definition of Bayesian networks.



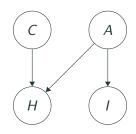
$$\mathbb{P}(C = c, A = a \mid H = 1, I = 1) = \frac{1}{Z}p(c)p(a)p(h = 1 \mid c, a)p(i = 1 \mid a)$$

Bayesian network with evidence = Markov network with  $Z=\mathbb{P}(H=1,I=1)$ 

Choose normalization constant of 1/probability of evidence.

Alternatively remember:

$$\mathbb{P}(A|B) = \mathbb{P}(A)\mathbb{P}(B|A)/\mathbb{P}(B)$$



- Unobserved leaf?  $\mathbb{P}(C=c, A=a|H=1)$ 
  - Marginalize out *I*, can just ignore (sums to 1).
  - Ignore unobserved leaves.
- Independence?  $\mathbb{P}(C = c | I = 1)$ 
  - Can ignore!  $\mathbb{P}(C = c | I = 1) = p(c)$
  - Throw away disconnected components.

# **Reviewing Lecture Material**

## **Summary**

#### **CSPs vs Markov Networks**

Normalize weights (divide by total weight) and consider a probability distribution. Compute probability that a given variable takes on a certain assignment (marginal probability)

| CSPs                   | Markov Networks        |
|------------------------|------------------------|
| Variables              | Random variables       |
| Weights                | Probabilities          |
| Max weight assignments | Marginal probabilities |

## **ICM vs Gibbs Sampling**

Iterates on an assignment (local search), can be slow/inaccurate.

## **Iterated Conditional Modes**

Maximum weight Assignment

Choose best value

Converges to local optimum

## **Gibbs Sampling**

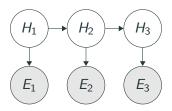
Marginal probabilities

Sample a value

Marginals converge to correct answer\*

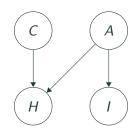
<sup>\*</sup>when all weights are positive, can take a long time though.

## Bayesian Network



- Random variables represent state of world.
- Directed edges dictate dependencies.
- Use local conditional distributions to get joint distributions.
- Probabilistic inference: given information ask questions about the world.

## Inference on Bayesian Networks



- Condition on evidence (leaves)
- Ignore unobserved leaves.
- Discard disconnected components.
- Treat as Markov network, normalization constant of probability of evidence.

#### **Next Week**

More Bayesian networks, including forward backward and/or particle filtering.

## **Problems**

### Reviewing Lecture Material

Markov Networks and Gibbs Sampling

Bayesian Networks

Summary

#### **Problems**

```
4 E >
```

## Why Bayesian Networks

- Handle **heterogeneously** missing information.
- Incorporate **prior** knowledge.
- Interpretable intermediate variables.
- Precursor to causal models.