Problem Session Week 7

Trevor Maxfield maxfit@stanford.edu

Minae Kwon
minae@cs.stanford.edu

May 19th, 2023

CS 221 - Spring 2023, Stanford University

Reviewing Lecture Material

Reviewing Lecture Material

Markov Networks and Gibbs Sampling

Bayesian Networks

Summary

Problems

Reviewing Lecture Material

Markov Networks and Gibbs Sampling

- Connecting factor graphs (CSPs, last week) with probability.
- In CSPs we found the **maximum weight assignment**:

$$\max_{x \in X} Weight(x) = \max_{x \in X} \prod_{j=1}^{m} f_j(x)$$

• Return a single x, no sense of how *likely* this x is.

Let the domain of all X_j be $\{0, 1, 2, 3\}$. Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$ is a satisfying assignment.

How many valid assignments?

Let the domain of all X_j be $\{0, 1, 2, 3\}$. Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$ is a satisfying assignment.

How many valid assignments? 6 How many possible assignments?

Let the domain of all X_j be $\{0, 1, 2, 3\}$. Define

$$f_i(x) = [x_i \ge i \ \land \ x_{i-1} \ge i]$$

so that any $(x_0 \ge 1, x_1 \ge 2, x_2 \ge 3, x_3 \ge 3)$ is a satisfying assignment.

How many valid assignments? 6
How many possible assignments? 4⁴

Let the domain of all X_j be $\{0,1,2,3\}$. Define

$$f_i(x) = (4 - \underbrace{x_i})[x_i \ge i \ \land \ x_{i-1} \ge i]$$

Satisfying assignments aren't changed. But max weight is 6 with x=(1,2,3,3). How do we represent uncertainty about this assignment/weight?

Markov Network Definition

Definition

Markov Network: A factor graph which defines a joint distribution over random variables $X = (X_1, \dots, X_n)$:

$$\mathbb{P}(X = x) = \frac{\mathsf{Weight}(x)}{\sum_{x'} \mathsf{Weight}(x')}$$

How much of the total weight possible weight is allocated in x? We can **choose** to let this represent uncertainty.

Markov Network Definition

Let the domain of all X_j be $\{0, 1, 2, 3\}$.

$$f_i(x) = (4 - x_i)[x_i \ge i \land x_{i-1} \ge i] \quad X_j \in \{0, 1, 2, 3\}$$

<i>X</i> ₀	x_1	<i>X</i> 2	<i>X</i> 3	W(x)	$\mathbb{P}(x)$
1	2	3	3	6	0.33
2	2	3	3	4	0.22
3	2	3	3	2	0.11
1	3	3	3	3	0.166
2	3	3	3	2	0.11
3	3	3	3	1	0.055

← □
← □
← □
← □
← □
← □
← □

୬९୯ 8/26

Marginal Probabilities

Definition

The **marginal probability** of $X_i = v$ is given by:

$$\mathbb{P}(X_i = v) = \sum_{x: x_i = v} \mathbb{P}(X = x)$$

The probability that a given entry $X_i = v$ is just the sum over all assignments where $x_i = v$. Alternatively you might recognize this as:

$$\mathbb{P}(X_i = v) = \sum \mathbb{P}(X = x | X_i = v)$$

Allows us to focus on the *probability of single variables* in satisfying assignments.

Gibbs Sampling

What to do if too many possible assignments?

- Initialize x to a random complete assignment.
- Loop through variables i = 1, ..., n until convergence.
 - Compute $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$ for all $v \in \mathsf{Domain}_i$
 - Set $x_i = v$ with probability $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$
 - Increment count_i(x_i
- Estimate $\hat{\mathbb{P}}(X_i = x_i) = \frac{\text{count}_i(x_i)}{\sum_{v \in \text{Domain}_i} \text{count}_i(v)}$

Tricky step: "Compute $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$ for all $v \in \mathsf{Domain}_i$ ".

Gibbs Sampling

Note that:

$$\mathbb{P}(X_i = v | X_{-i} = x_{-i}) = \frac{\text{Weight}(x_{-i} \cup \{X_i : v\})}{Z\mathbb{P}(X_{-i} = x_{-i})}$$

Not helpful in this form! Still need Z and $\mathbb{P}(X_{-i} = x_{-i})$ (expensive)!

How is $\mathbb{P}(X_{-i} = x_{-i})$ calculated from weights though?

$$\mathbb{P}(X_{-i} = x_{-i}) = \frac{\sum_{v} \mathsf{Weight}(x_{-i} \cup \{X_i : v\})}{Z}$$

Eureka! Fix x_{-i} and get proportion of weight made up by each v:

$$\mathbb{P}(X_i = v | X_{-i} = x_{-i}) = \frac{\mathsf{Weight}(x_{-i} \cup \{X_i : v\})}{\sum_{v} \mathsf{Weight}(x_{-i} \cup \{X_i : v\})}$$

Need to compute each Weight $(x_{-i} \cup \{X_i : v\})$ anyways, free!

Reviewing Lecture Material

Bayesian Networks

Bayesian Networks

Markov networks but factors have more meaning. Both define joint probability distributions over assignments.

Markov Networks

Arbitrary factors
Set of preferences

Bayesian Networks

Local conditional probabilities Generative process

Probability Review

Given
$$X = (X_1, \ldots, X_n)$$

- Joint distribution: $\mathbb{P}(X = x)$
 - Maps each event x to its probability.
- Marginal distribution: $\mathbb{P}(X_i = x_i)$
 - Probability of observing i-th variable as x_i .
 - Marginalize out other X_{−i}.
- Conditional distribution: $\mathbb{P}(X_i = x_i \mid X_j = x_j)$
 - Given knowledge of x_j 's occurrence (can be any number of other variables), what is the probability of observing $X_i = x_i$?

Example
$$X = (X_1, X_2, X_3, X_4)$$

$$\mathbb{P}(X_1 \mid X_3 = x_3, X_4 = x_4)$$

Distribution of X_1 given that we **marginalize out** X_2 and condition on knowledge of X_3 and X_4 .

Bayesian Network

Definition

Let $X = (X_1, ..., X_n)$ be random variables. A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i | x_{\mathsf{Parents}(i)})$$

Note that lowercase p is used to denote *local* conditional distribution (only conditioning on parents), which is specified as part of the network.

How can we use Bayesian networks?

Remember that the network is just a computable representation of $\mathbb{P}(X_1,\ldots,X_n)$, where we indicate interactions between variables as dependencies.

Given some evidence $e = E \subseteq X$, we query $Q \subseteq X$. Then we'd like:

$$\mathbb{P}(Q|E=e) \longleftrightarrow \mathbb{P}(Q=q|E=e)$$
 for all values q

How do we compute? We'll see a similar trick as in Markov networks!

$$\mathbb{P}(C = c, A = a, H = h, I = i) = \frac{1}{Z}p(c)p(a)p(h \mid c, a)p(i \mid a)$$

Bayesian network = Markov network with normalization constant $Z=1\,$

Simply using definition of Bayesian networks.

$$\mathbb{P}(C = c, A = a \mid H = 1, I = 1) = \frac{1}{Z}p(c)p(a)p(h = 1 \mid c, a)p(i = 1 \mid a)$$

Bayesian network with evidence = Markov network with $Z=\mathbb{P}(H=1,I=1)$

Choose normalization constant of 1/probability of evidence.

Alternatively remember:

$$\mathbb{P}(A|B) = \mathbb{P}(A)\mathbb{P}(B|A)/\mathbb{P}(B)$$

- Unobserved leaf? $\mathbb{P}(C=c, A=a|H=1)$
 - Marginalize out *I*, can just ignore (sums to 1).
 - Ignore unobserved leaves.
- Independence? $\mathbb{P}(C = c | I = 1)$
 - Can ignore! $\mathbb{P}(C = c | I = 1) = p(c)$
 - Throw away disconnected components.

Reviewing Lecture Material

Summary

CSPs vs Markov Networks

Normalize weights (divide by total weight) and consider a probability distribution. Compute probability that a given variable takes on a certain assignment (marginal probability)

CSPs	Markov Networks
Variables	Random variables
Weights	Probabilities
Max weight assignments	Marginal probabilities

ICM vs Gibbs Sampling

Iterates on an assignment (local search), can be slow/inaccurate.

Iterated Conditional Modes

Maximum weight Assignment

Choose best value

Converges to local optimum

Gibbs Sampling

Marginal probabilities

Sample a value

Marginals converge to correct answer*

^{*}when all weights are positive, can take a long time though.

Bayesian Network

- Random variables represent state of world.
- Directed edges dictate dependencies.
- Use local conditional distributions to get joint distributions.
- Probabilistic inference: given information ask questions about the world.

Inference on Bayesian Networks

- Condition on evidence (leaves)
- Ignore unobserved leaves.
- Discard disconnected components.
- Treat as Markov network, normalization constant of probability of evidence.

Next Week

More Bayesian networks, including forward backward and/or particle filtering.

Problems

Reviewing Lecture Material

Markov Networks and Gibbs Sampling

Bayesian Networks

Summary

Problems

```
4 E >
```

Why Bayesian Networks

- Handle **heterogeneously** missing information.
- Incorporate **prior** knowledge.
- Interpretable intermediate variables.
- Precursor to causal models.