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Markov Network Motivation

• Connecting factor graphs (CSPs, last week) with probability.

• In CSPs we found the maximum weight assignment:

max
x∈X

Weight(x) = max
x∈X

m∏
j=1

fj(x)

• Return a single x , no sense of how likely this x is.

x0 x1 x2 x3

f1 f2 f3
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Markov Network Motivation

x0 x1 x2 x3

f1 f2 f3

Let the domain of all Xj be {0, 1, 2, 3}. Define

fi (x) = [xi ≥ i ∧ xi−1 ≥ i ]

so that any (x0 ≥ 1, x1 ≥ 2, x2 ≥ 3, x3 ≥ 3) is a satisfying

assignment.

How many valid assignments?

6

How many possible assignments? 44
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Markov Network Motivation

x0 x1 x2 x3

f1 f2 f3

Let the domain of all Xj be {0, 1, 2, 3}. Define

fi (x) = (4− xi )[xi ≥ i ∧ xi−1 ≥ i ]

Satisfying assignments aren’t changed. But max weight is 6 with

x = (1, 2, 3, 3). How do we represent uncertainty about this

assignment/weight?
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Markov Network Definition

Definition
Markov Network: A factor graph which defines a joint distribution

over random variables X = (X1, . . . ,Xn) :

P(X = x) =
Weight(x)∑
x ′ Weight(x ′)

How much of the total weight possible weight is allocated in x?

We can choose to let this represent uncertainty.
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Markov Network Definition

x0 x1 x2 x3

f1 f2 f3

Let the domain of all Xj be {0, 1, 2, 3}.

fi (x) = (4− xi )[xi ≥ i ∧ xi−1 ≥ i ] Xj ∈ {0, 1, 2, 3}

x0 x1 x2 x3 W (x) P(x)
1 2 3 3 6 0.33

2 2 3 3 4 0.22

3 2 3 3 2 0.11

1 3 3 3 3 0.166

2 3 3 3 2 0.11

3 3 3 3 1 0.055
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Marginal Probabilities

Definition
The marginal probability of Xi = v is given by:

P(Xi = v) =
∑

x :xi=v

P(X = x)

The probability that a given entry Xi = v is just the sum over all

assignments where xi = v . Alternatively you might recognize this

as:

P(Xi = v) =
∑

P(X = x |Xi = v)

Allows us to focus on the probability of single variables in

satisfying assignments.
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Gibbs Sampling

What to do if too many possible assignments?

• Initialize x to a random complete assignment.

• Loop through variables i = 1, . . . , n until convergence.

• Compute P(Xi = v |X−i = x−i ) for all v ∈ Domaini
• Set xi = v with probability P(Xi = v |X−i = x−i )

• Increment counti (xi

• Estimate P̂(Xi = xi ) =
counti (xi )∑

v∈Domaini
counti (v)

Tricky step: “Compute P(Xi = v |X−i = x−i ) for all v ∈ Domaini”.
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Gibbs Sampling

Note that:

P(Xi = v |X−i = x−i ) =
Weight(x−i ∪ {Xi : v})

ZP(X−i = x−i )

Not helpful in this form! Still need Z and P(X−i = x−i )

(expensive)!

How is P(X−i = x−i ) calculated from weights though?

P(X−i = x−i ) =

∑
v Weight(x−i ∪ {Xi : v})

Z

Eureka! Fix x−i and get proportion of weight made up by each v :

P(Xi = v |X−i = x−i ) =
Weight(x−i ∪ {Xi : v})∑
v Weight(x−i ∪ {Xi : v})

Need to compute each Weight(x−i ∪ {Xi : v}) anyways, free!
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Bayesian Networks

Markov networks but factors have more meaning. Both define joint

probability distributions over assignments.

Markov Networks Bayesian Networks

Arbitrary factors Local conditional probabilities

Set of preferences Generative process

H1 H2 H3

E1 E2 E3
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Probability Review

Given X = (X1, . . . ,Xn)

• Joint distribution: P(X = x)
• Maps each event x to its probability.

• Marginal distribution: P(Xi = xi )
• Probability of observing i-th variable as xi .

• Marginalize out other X−i .

• Conditional distribution: P(Xi = xi | Xj = xj)
• Given knowledge of xj ’s occurrence (can be any number of

other variables), what is the probability of observing Xi = xi?

Example X = (X1,X2,X3,X4)

P(X1 | X3 = x3,X4 = x4)

Distribution of X1 given that we marginalize out X2 and

condition on knowledge of X3 and X4.
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Bayesian Network

Definition
Let X = (X1, . . . ,Xn) be random variables. A Bayesian network is

a directed acyclic graph (DAG) that specifies a joint distribution

over X as a product of local conditional distributions, one for each

node:

P(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

p(xi |xParents(i))

Note that lowercase p is used to denote local conditional

distribution (only conditioning on parents), which is specified as

part of the network.

15/26



Probabilistic Inference

How can we use Bayesian networks?

Remember that the network is just a computable representation of

P(X1, . . . ,Xn), where we indicate interactions between variables as

dependencies.

Given some evidence e = E ⊆ X , we query Q ⊆ X . Then we’d like:

P(Q|E = e)←→ P(Q = q|E = e) for all values q

How do we compute? We’ll see a similar trick as in Markov

networks!
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Probabilistic Inference

Simply using definition of Bayesian networks.
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Probabilistic Inference

Choose normalization constant of 1/probability of evidence.

Alternatively remember:

P(A|B) = P(A)P(B|A)/P(B)
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Probabilistic Inference

C

H

A

I

• Unobserved leaf? P(C = c ,A = a|H = 1)

• Marginalize out I , can just ignore (sums to 1).

• Ignore unobserved leaves.

• Independence? P(C = c |I = 1)

• Can ignore! P(C = c |I = 1) = p(c)

• Throw away disconnected components.
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CSPs vs Markov Networks

Normalize weights (divide by total weight) and consider a

probability distribution. Compute probability that a given variable

takes on a certain assignment (marginal probability)

CSPs Markov Networks

Variables Random variables

Weights Probabilities

Max weight assignments Marginal probabilities
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ICM vs Gibbs Sampling

Iterates on an assignment (local search), can be slow/inaccurate.

Iterated Conditional Modes Gibbs Sampling

Maximum weight Assignment Marginal probabilities

Choose best value Sample a value

Converges to local optimum Marginals converge to correct answer*

*when all weights are positive, can take a long time though.
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Bayesian Network

H1 H2 H3

E1 E2 E3

• Random variables represent state of world.

• Directed edges dictate dependencies.

• Use local conditional distributions to get joint distributions.

• Probabilistic inference: given information ask questions about

the world.
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Inference on Bayesian Networks

C

H

A

I

• Condition on evidence (leaves)

• Ignore unobserved leaves.

• Discard disconnected components.

• Treat as Markov network, normalization constant of

probability of evidence.
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Next Week

More Bayesian networks, including forward backward and/or

particle filtering.

25/26



Problems

Reviewing Lecture Material

Markov Networks and Gibbs Sampling

Bayesian Networks

Summary

Problems

26/26



Why Bayesian Networks

• Handle heterogeneously missing information.

• Incorporate prior knowledge.

• Interpretable intermediate variables.

• Precursor to causal models.
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