
Problem Session Week 8

Trevor Maxfield

maxfit@stanford.edu

Minae Kwon

minae@cs.stanford.edu

May 26th, 2023

CS 221 - Spring 2023, Stanford University

1/29

Reviewing Lecture Material

Reviewing Lecture Material

Bayesian Networks and HMMs

Lattices and Forward Backward

Particle Filtering

Supervised Learning

EM Algorithm

Summary

Problems

2/29

Reviewing Lecture Material

Bayesian Networks and HMMs

3/29

Bayesian Network

Definition
Let X = (X1, . . . ,Xn) be random variables. A Bayesian network is

a directed acyclic graph (DAG) that specifies a joint distribution

over X as a product of local conditional distributions, one for each

node:

P(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

p(xi |xParents(i))

Note that lowercase p is used to denote local conditional

distribution (only conditioning on parents), which is specified as

part of the network.

4/29

Probabilistic Inference - Joint

T

E

R

V

T

E

R

V

p(t) p(r)

p(e | t, r) p(v | r)

P(T = t,R = r ,E = e,V = v) = p(t)p(r)p(e | t, r)p(v | r)

=
1

Z

∏
factors

Joint probability (Bayesian Network definition) is just Markov

Network with normalization constant Z = 1.
5/29

Probabilistic Inference - Conditioning

T

E

R

V

T R

p(t) p(r)

p(e = 1 | t, r) p(v = 1 | r)

P(T = t,R = r |E = 1,V = 1) =
p(t)p(r)p(e = 1 | t, r)p(v = 1 | r)

P(E = 1,V = 1)

Conditional probability (Bayesian Network with evidence) is just

Markov Network with normalization Z = P(Evidence).

Also P(A|B)P(B) = P(A)P(B|A)

6/29

Probabilistic Inference - Unobserved Leaves

T

E

R

V

P(T = t,R = r | E = 1) =
∑
v

P(T = t,R = r ,V = v | E = 1)

=
∑
v

p(t)p(r)p(e = 1 | t, r)p(v | r)
P(E = 1)

=
p(t)p(r)p(e = 1 | t, r)

P(E = 1)

Throw away (marginalize out) unobserved leaves before inference.

7/29

Probabilistic Inference - Independence

T

E

R

V

P(T = t | V = 1) =
∑
r ,e

P(T = t,R = r ,E = e | V = 1)

=
∑
r ,e

p(t)p(r)p(e | t, r)p(v = 1 | r)
P(V = 1)

= p(t)
∑
r

p(r)p(v = 1 | r)
P(V = 1)

= p(t)

Ignore disconnected components.
8/29

Hidden Markov Models

H1 H2 H3 · · ·

E1 E2 E3

P(H = h,E = e) = p(h1)
n∏

i=2

p(hi | hi−1)
n∏

i=1

p(ei | hi)

Where H = (H1, . . . ,Hn) and E = (E1, . . . ,En).

True state moves in H, potentially inaccurate observations of Hi

through Ei .

9/29

Hidden Markov Models

H1 H2 H3 · · ·

E1 E2 E3

Two common questions:

1. Filtering: P(Hi | E1, . . . ,Ei). Distribution of Hi given evidence

to that point.

2. Smoothing: P(Hi | E1, . . . ,En). Distribution of Hi given all

evidence, including future.

10/29

Reviewing Lecture Material

Lattices and Forward Backward

11/29

Lattice Representation

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

• Each edge is a probability/weight: the probability of

transitioning with that edge in H space multiplied with the

probability of what was observed (ei , given true hi).

• What is the weight on start→ H1 = 2?

p(h1 = 2)p(e1 | h1 = 2)

• What is the weight from h2 = x to h3 = y with e3 = 1?

p(h3 = y | h2 = x)p(e3 = 1 | h3 = y)

12/29

Lattice Representation

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

• Each edge is a probability/weight: the probability of

transitioning with that edge in H space multiplied with the

probability of what was observed (ei , given true hi).

• What is the weight on start→ H1 = 2?

p(h1 = 2)p(e1 | h1 = 2)

• What is the weight from h2 = x to h3 = y with e3 = 1?

p(h3 = y | h2 = x)p(e3 = 1 | h3 = y)

12/29

Lattice Representation

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

• Each edge is a probability/weight: the probability of

transitioning with that edge in H space multiplied with the

probability of what was observed (ei , given true hi).

• What is the weight on start→ H1 = 2?

p(h1 = 2)p(e1 | h1 = 2)

• What is the weight from h2 = x to h3 = y with e3 = 1?

p(h3 = y | h2 = x)p(e3 = 1 | h3 = y)

12/29

Lattice Representation

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

P[edge] = p(hi | hi−1)p(ei | hi)

Start to end paths are just P(H = h,E = e) by definition of

Bayesian Networks.

What if we want conditional probability (smoothing)?

P(Hj = hj | E = e) =
∑

h∈H−j

p(h1)
∏n

i=1 p(ei | hi)
∏n

i=2 p(hi | hi−1)

P(E = e)

Numerator is sum of cost of all paths through Hj = hj , normalized

by probability of observed evidence.
13/29

Forward Backward

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

Need cost of all paths through a given node.

• Forward:
Fi (hi) =

∑
hi−1

Fi−1(hi−1)Weight(Hi−1 = hi−1,Hi = hi)

• Sum of weights of paths from start to Hi = hi .

• Backward:
Bi (hi) =

∑
hi+1

Bi+1(hi+1)Weight(Hi = hi ,Hi+1 = hi+1)

• Sum of weights of paths from Hi = hi to end.

• Total: Si (hi) = Fi (hi)Bi (hi)

• Sum of weights of paths from start to end through Hi = hi .

14/29

Forward Backward

start

H1 = 0

H1 = 1

H1 = 2

H2 = 0

H2 = 1

H2 = 2

H3 = 0

H3 = 1

H3 = 2

end

Recall we wanted to compute:

P(Hj = hj | E = e) =
∑

h∈H−j

p(h1)
∏n

i=1 p(ei | hi)
∏n

i=2 p(hi | hi−1)

P(E = e)

Numerator was cost of all paths through Hj = hj given evidence

E = e. This is Sj(hj)!

Denominator? Sum of weights of all paths given the evidence.

P(E = e) =
∑
hk

Sj(hk)

15/29

Reviewing Lecture Material

Particle Filtering

16/29

Particle Filtering

• Forward Backward (smoothing) is O(n|Domain|2). Too slow!

• Use particle filtering for approximate probabilistic inference.

• Can ignore improbable locations (low probability) given the

evidence.

• Sacrifice accuracy for speed!

17/29

Beam Search for HMMs

• Initialize C ← [{}]
• For each i = 1, . . . , n:

• Extend: C ′ ← {h ∪ {Hi : v} : h ∈ C , v ∈ Domaini}
• Create new C ′ by joining existing entries h ∈ C with all

possible Hi = v .

• Prune: C ← K particles of C ′ with highest weights (beam).

• Normalize weights to get approximate P̂(H1, . . . ,Hn | E = e)

• Sum probabilities to get any approximate P̂(Hi | E = e)

Extending is slow (considers all possible next values) and prune is

greedy (not always the best).

18/29

Particle Filtering

Rather than extend (exhaustive) and prune (greedy), we run the

following steps to generate each next entry in H:

1. Propose: for each particle (h1, . . . , hi) sample

Hi+1 ∼ p(hi+1 | hi).
2. Weight: For each existing particle (h1, . . . , hi+1), weight it by

probability of observed ei+1, p(ei+1 | hi+1).

3. Resample: What if particles have really small weight from

previous step? Normalize the weights, resample K particles

(h1, . . . , hi+1) using those weights.

19/29

Reviewing Lecture Material

Supervised Learning

20/29

Supervised Learning

T

E

R

V

Where do the parameters come from? Need local conditional

distributions, but how?

Counting!

• Data: Example assignments of all variables (X).

• Use this to determine local condition probabilities (θ).

21/29

Supervised Learning

T

E

R

V

Where do the parameters come from? Need local conditional

distributions, but how?

Counting!

• Data: Example assignments of all variables (X).

• Use this to determine local condition probabilities (θ).

21/29

Parameter Sharing

• Parameter Sharing: Local

conditional distributions of

different variables can share the

same parameters.

p(R1 = r | g) = p(R2 = r | g).
• In HMMs, rather than

p(hi | hi+1) and p(ei | hi) for all
i , could just have

pstart, ptransition, pemit. Less

expressive but easier to learn!

G

R1 R2

P(X = x) =
n∏

i=1

pdi (xi | xParents(i))

22/29

Counting!

Input: Full assignments x ∈ Dtrain

Output: Parameters θ = {pd : d ∈ D} (D is collection of

distributions)

• Count: For each xi ∈ x ∈ Dtrain

• Increment countdi (xParents(i), xi)

• Normalize: For each d and local assignment xParents(i):

• Set pd(xi | xParents(i)) ∝ countd(xparents(i), xi)

This is just the closed form solution of the maximum likelihood

objective:

max
θ

∏
x∈Dtrain

P(X = x ; θ)

23/29

Reviewing Lecture Material

EM Algorithm

24/29

EM Algorithm

What happens if we don’t observe some variables (e.g. hidden

ones)? Can’t count!

Assume that H is hidden but we observe E = e. Maximize the

probability of observing e using our parameter θ:

max
θ

∏
e∈Dtrain

P(E = e; θ) = max
θ

∏
e∈Dtrain

∑
h

P(H = h,E = e; θ)

Marginalize out what we can’t observe - Maximum Marginal

Likelihood

25/29

EM Algorithm

Generalization of K-means, centroids become parameters θ and the

cluster assignments are the hidden variables H.

• Initialize θ randomly (parameters of our distributions)

• Repeat until convergence:

• E-Step: Compute q(h) = P(H = h | E = e; θ) for each h

(Bayesian inference)

• Create fully-observed weighted examples (h, e) with weight

q(h)

• M-Step: Maximum likelihood (count and normalize) on

weighted examples to get new θ (weight each appearance by

q(h))

26/29

Reviewing Lecture Material

Summary

27/29

HMM Algorithms

• Forward Backward

• Dynamic programming for inference, exact.

• Particle Filtering

• Use particles to represent approximate H distributions.

• Scales to large H space (unlike forward-backward).

• Maintains better particle diversity (compared to beam search).

• Learning local conditional distributions

• Maximum Likelihood (counting and normalizing)

• EM Algorithm for hidden variables.

28/29

Problems

Reviewing Lecture Material

Bayesian Networks and HMMs

Lattices and Forward Backward

Particle Filtering

Supervised Learning

EM Algorithm

Summary

Problems

29/29

	Reviewing Lecture Material
	Bayesian Networks and HMMs
	Lattices and Forward Backward
	Particle Filtering
	Supervised Learning
	EM Algorithm
	Summary

	Problems

