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Bayesian Network

Definition
Let X = (Xi,...,X,) be random variables. A Bayesian network is

a directed acyclic graph (DAG) that specifies a joint distribution
over X as a product of local conditional distributions, one for each
node:

P(Xl =X1,.., Xn = Xn) = H p(Xi‘XParents(i))
i=1

Note that lowercase p is used to denote local conditional

distribution (only conditioning on parents), which is specified as
part of the network.
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Probabilistic Inference - Joint

Joint probability (Bayesian Network definition) is just Markov

Network with normalization constant Z = 1.
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Probabilistic Inference - Conditioning

PT=tR=rE=1V=1)= p(t)p(r)%((eE:;l' :}Zpg/ =11

Conditional probability (Bayesian Network with evidence) is just
Markov Network with normalization Z = P(Evidence).

Also P(A|B)P(B) = P(A)P(B|A)
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Probabilistic Inference - Unobserved Leaves

P(T:t,R:r\E:n:ZP(T:t R=r,V=v|E=1)

:Zp(t e—l\tr) (v|r)
_]_)

_ p(t)p( )p(e =1 \ t,r)
P(E = 1)

Throw away (marginalize out) unobserved leaves before inference.
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Probabilistic Inference - Independence

IP’(T:t|Vzl)zZIP’(T:t,R:r,E:e|V:1)

B p(t e]tr)(v:1|r)
-y ARt e

HZYJMV;JGZPM

Ignore disconnected components.
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Hidden Markov Models

@@@

n

P(H = h,E ) [T p(hi | hia Hp(e,-!h,-)
=2 i=1

Where H = (Hi1,...,H,) and E = (Eq,..., Ep).

True state moves in H, potentially inaccurate observations of H;
through E;.
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Hidden Markov Models

Two common questions:

1. Filtering: P(H; | Eq, ..., E;). Distribution of H; given evidence
to that point.

2. Smoothing: P(H; | E1,. .., E,). Distribution of H; given all
evidence, including future.
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Lattice Representation

e Each edge is a probability /weight: the probability of
transitioning with that edge in H space multiplied with the
probability of what was observed (e;, given true h;).

e What is the weight on start— H; = 27
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Lattice Representation

e Each edge is a probability /weight: the probability of
transitioning with that edge in H space multiplied with the
probability of what was observed (e;, given true h;).

e What is the weight on start— H; = 27
p(h1 =2)p(er | h1 = 2)

e What is the weight from h, = x to h3 = y with e3 = 17
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Lattice Representation

e Each edge is a probability /weight: the probability of
transitioning with that edge in H space multiplied with the
probability of what was observed (e;, given true h;).
e What is the weight on start— H; = 27
p(h1 =2)p(er | h1 = 2)
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Lattice Representation

start

Pledge] = p(hi | hi—1)p(ei | hi)
Start to end paths are just P(H = h, E = e) by definition of
Bayesian Networks.

What if we want conditional probability (smoothing)?

P(HJ — h_j | E — e) _ Z P(hl)H7:1 p(TIID(EhIzl_e[),n_2 p(hl ‘ hi—l)

hEH,J'

Numerator is sum of cost of all paths through H; = hj, normalized
by probability of observed evidence.
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Forward Backward

start

Need cost of all paths through a given node.

e Forward:
Fi(hi) = >_p. , Fi-1(hi—1)Weight(H;—1 = hi—1, H; = h;)
e Sum of weights of paths from start to H; = h;.
e Backward:

Bi(hi) = >_4,,, Bi+1(hiv1)Weight(H; = hi, Hi1 = hii1)
e Sum of weights of paths from H; = h; to end.
e Total: S,'(h,') = F,'(h,')B,‘(h,‘)
e Sum of weights of paths from start to end through H; = h;.
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Forward Backward

start

Recall we wanted to compute:

P(Hj=hj|[E=e)= > p(hy) 117 P(%(;il_elfzz p(hi | hi—1)

hEH,j

Numerator was cost of all paths through H; = h; given evidence
E =e. Thisis S;(h;)!

Denominator? Sum of weights of all paths given the evidence.

P(E =€) = 3 S(h)
hk

15/29



Reviewing Lecture Material

Particle Filtering

16/29



Particle Filtering

Forward Backward (smoothing) is O(n|Domain|?). Too slow!

[

e Use particle filtering for approximate probabilistic inference.

e Can ignore improbable locations (low probability) given the
evidence.

e Sacrifice accuracy for speed!
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Beam Search for HMMs

Initialize C < [{}]
Foreachi=1,....nm
e Extend: C' < {hU{H;:v} : he C,v € Domain;}
e Create new C’ by joining existing entries h € C with all

possible H; = v.
e Prune: C + K particles of C’ with highest weights (beam).
e Normalize weights to get approximate I@’(Hl, ...,Hy | E=¢)
e Sum probabilities to get any approximate I@’(H,- | E=¢)

Extending is slow (considers all possible next values) and prune is
greedy (not always the best).
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Particle Filtering

Rather than extend (exhaustive) and prune (greedy), we run the
following steps to generate each next entry in H:

1. Propose: for each particle (hy, ..., h;) sample
Hiy1 ~ p(hiy1 | hi).

2. Weight: For each existing particle (hy, ..., hit+1), weight it by
probability of observed e;;1, p(€j+1 | hi+1)-

3. Resample: What if particles have really small weight from
previous step? Normalize the weights, resample K particles
(hi,...,hj;1) using those weights.
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Supervised Learning

OGN0

Where do the parameters come from? Need local conditional
distributions, but how?
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Supervised Learning

OGN0

Where do the parameters come from? Need local conditional
distributions, but how?

Counting!

e Data: Example assignments of all variables (X).

e Use this to determine local condition probabilities ().
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Parameter Sharing

e Parameter Sharing: Local
conditional distributions of

different variables can share the
same parameters. a
p(Ri=r[g)=p(Ro=r]g).

e In HMMs, rather than

p(hi | hit1) and p(e; | hy) for all @ @
i, could just have

Pstart, Ptransitions Pemit- L€ss
expressive but easier to learn!

P(X = X) = HPd,-(Xi | XParents(i))
i=1
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Input: Full assignments x € Diain
Output: Parameters § = {py : d € D} (D is collection of
distributions)
e Count: For each x; € x € Dirain
e Increment county, (Xparents(i)s Xi)
e Normalize: For each d and local assignment Xparents(i):

e Set py(X; | Xparents(i)) < county(Xparents(i) Xi)

This is just the closed form solution of the maximum likelihood
objective:

max H P(X = x;0)

XEDtrain
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EM Algorithm

What happens if we don't observe some variables (e.g. hidden
ones)? Can't count!

Assume that H is hidden but we observe E = e. Maximize the

probability of observing e using our parameter 6:

max H P(Eze;@)zm@ax H Z]P’(H:h,E:e;G)

eeDtrain eE'Dtrain h

Marginalize out what we can't observe - Maximum Marginal
Likelihood
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EM Algorithm

Generalization of K-means, centroids become parameters ¢ and the
cluster assignments are the hidden variables H.

e Initialize # randomly (parameters of our distributions)

e Repeat until convergence:
e E-Step: Compute q(h) =P(H = h | E = e;0) for each h
(Bayesian inference)
e Create fully-observed weighted examples (h, €) with weight
q(h)
e V-Step: Maximum likelihood (count and normalize) on
weighted examples to get new 0 (weight each appearance by

q(h))
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HMM Algorithms

e Forward Backward

e Dynamic programming for inference, exact.
e Particle Filtering

e Use particles to represent approximate H distributions.

e Scales to large H space (unlike forward-backward).

e Maintains better particle diversity (compared to beam search).
e Learning local conditional distributions

e Maximum Likelihood (counting and normalizing)
e EM Algorithm for hidden variables.
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Problems
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