Problem Session Week 9

Trevor Maxfield
maxfit@stanford.edu

Minae Kwon
minae@cs.stanford.edu

June Second, 2023
CS 221 - Spring 2023, Stanford University

Reviewing Lecture Material

Reviewing Lecture Material
Propositional Logic
First Order Logic

Summary

Problems

Logic

- Thinking in terms of logical formulas and inference rules, as opposed to state or variable based models.
- "Logic language" to represent and reason with knowledge.
- Syntax: defines valid formulas.
- Semantics: specify models
 (satisfying assignments) for each formula.
- Inference rules: what does a formula imply?

Reviewing Lecture Material

Propositional Logic

Syntax and Semantics of Propositional Logic

Syntax

- Propositional symbols: A, B, C, Cat, ...
- Can be anything
- Logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Not, And, Or, Implies, Equals
- Build up formulas recursively, can operate on formulas with logical connectives

Semantics

Definition

A model in propositional logic is an assignment of truth values to propositional symbols.

Interpretation function: if model w satisfies formula f, then

$$
\mathcal{I}(f, w) \in\{0,1\}
$$

Models

- Let $\mathcal{M}(f)$ be the set of models w for which $\mathcal{I}(f, w)=1$.
- Set of all possible valid assignments. A formula compactly represents a set of models.
- A knowledge base KB is a set of formulas representing their intersection:

$$
\mathcal{M}(K B)=\bigcap_{f \in K B} \mathcal{M}(f)
$$

- KB specifics constraints on the world, $\mathcal{M}(K B)$ is the set of all worlds satisfying those constraints.
- Remember $\mathcal{M}(f)$ is just a set of models, this is intersection of those sets over a number of f.
- Adding more formulas to the knowledge base ...

Models

- Let $\mathcal{M}(f)$ be the set of models w for which $\mathcal{I}(f, w)=1$.
- Set of all possible valid assignments. A formula compactly represents a set of models.
- A knowledge base KB is a set of formulas representing their intersection:

$$
\mathcal{M}(K B)=\bigcap_{f \in K B} \mathcal{M}(f)
$$

- KB specifics constraints on the world, $\mathcal{M}(K B)$ is the set of all worlds satisfying those constraints.
- Remember $\mathcal{M}(f)$ is just a set of models, this is intersection of those sets over a number of f.
- Adding more formulas to the knowledge base ... shrinks the set of models

Adding Formulas

When we add f to KB:

1. Entailment: no information was added.

- $\mathrm{KB} \vDash f$ iff $\mathcal{M}(\mathrm{KB}) \subseteq \mathcal{M}(f)$

2. Contradiction: f contradicts what we know

- KB contradicts f iff

$$
\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f)=\emptyset
$$

3. Contingency: f adds non-trivial information to $K B$

- $\emptyset \subsetneq \mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) \subsetneq$ $\mathcal{M}(\mathrm{KB})$

KB contradicts f iff KB entails $\neg f$.

Inference Rules

Inference rules allow us to reason with formulas without ever instantiating models.

Modus Ponens: for any propositional symbols p and q :

$$
\frac{p, p \rightarrow q}{q} \quad \text { which is } \frac{\text { (premises) }}{(\text { conclusion) }}
$$

Inference rule: (syntax, not semantics!) if f_{1}, \ldots, f_{k}, g are formulas then:

$$
\frac{f_{1}, \ldots, f_{k}}{g}
$$

KB derives/proves $f(\mathrm{~KB} \vdash f)$ iff f eventually is added to KB through inference rules.

Conjunctive Normal Form

A CNF formula is a conjunction (and) of clauses (or's):

$$
(A \vee B \vee \neg C) \wedge(\neg B \vee D)
$$

Can always convert:

- $f \leftrightarrow g$ is $(f \rightarrow g) \wedge(g \rightarrow f)$
- $f \rightarrow g$ is $\neg f \vee g$
- $\neg(f \wedge g)$ is $\neg f \vee \neg g$
- $\neg(f \vee g)$ is $\neg f \wedge \neg g$
- Double negatives cancel.
- Can distribute \vee over $\wedge: f \vee(g \wedge h)$ is $(f \vee g) \wedge(f \vee h)$

Resolution

Remember that entailment $\mathrm{KB} \vDash f$ is the opposite of contradiction $\mathrm{KB} \cup\{\neg f\}$ is unsatisfiable.

Resolution-based inference:

- Add $\neg f$ into KB
- Convert all formulas into CNF
- Repeatedly apply resolution rule.
- Return entailment iff derive false.

Resolution rule:

$$
\frac{f_{1} \vee \cdots \vee f_{n} \vee p, \quad \neg p \vee g_{1} \vee \cdots \vee g_{m}}{f_{1} \vee \cdots \vee f_{n} \vee g_{1} \vee \cdots \vee g_{m}}
$$

Reviewing Lecture Material

First Order Logic

First Order Logic

Syntax

Uses terms to refer to objects:

- Constant symbols (e.g. arithmetic)
- Variable (e.g. x)
- Functions of terms (e.g. $\operatorname{Sum}(3, x))$

Formulas refer to truth values:

- Atomic formulas (atoms), predicate applied to terms.
- Knows(x, arithmetic)
- Connectives applied to formulas:
- Student $(x) \rightarrow$ Knows(x,arithmetic)
- Quantifiers applied to formulas:
- $\forall x \operatorname{Student}(x) \rightarrow$ Knows (x, arithmetic)

Quantifiers

- Universal quantification (\forall) :
- Like conjunction (and): $\forall x P(x)$ is $P(A) \wedge P(B) \wedge \cdots$
- Existential quantification (\exists) :
- Like disjunction (or): $\exists x P(x)$ is like $P(A) \vee P(B) \vee \cdots$

Properties:

- $\neg \forall x P(x)$ is equivalently $\exists x \neq P(x)$
- $\forall x \exists y \operatorname{Knows}(x, y)$ is different from $\exists y \forall x \operatorname{Knows}(x, y)$.

Models in first order logic map constant symbols to objects and predicate symbols to (satisfying) tuples of objects.

Summary

Reviewing Lecture Material
Propositional Logic
First Order Logic

Summary

Problems

Things we Skipped Reviewing

- Soundness and completeness
- Propositional Horn clauses (definite + goal clause)
- First order modens ponens
- First order resolution

Problems

Reviewing Lecture Material
Propositional Logic
First Order Logic

Summary

Problems

Definite Clauses (Propositional)

Definition

A definite clause has the following form:

$$
\left(p_{1} \wedge \cdots \wedge p_{k}\right) \rightarrow q
$$

p_{i} and q are propositional symbols. Formula, not an inference rule.
A Horn clause is either:

- A definite clause $\left(p_{1} \wedge \cdots \wedge p_{k}\right) \rightarrow q$
- A goal clause $\left(p_{1} \wedge \cdots \wedge p_{k}\right) \rightarrow$ false, equivalently $\neg\left(p_{1} \wedge \cdots \wedge p_{k}\right)$.

