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• In this module, I will introduce Markov networks.
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• So far, we have introduced CSPs, the first of our variable-based models.

• Markov networks are the second type of variable-based model, which will connect factor graphs with probability and serve as a stepping stone
on the way to Bayesian networks.



Review: factor graphs

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi ∈ Domaini

Factors:

f1, . . . , fm, with each fj(X) ≥ 0

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
m∏
j=1

fj(x)
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• Markov networks, like all variable-based models, are based on factor graphs.

• Recall that a factor graph contains a set of variables whose relationships are determined by a set of factors. For each assignment to all the
variables, we have a non-negative weight, which captures how ”good” a particular assignment is.

• Aside: Markov networks are also known as Markov random fields. They are typically defined as an undirected graph over variables, where we
have a factor for each clique in the graph. But we use factor graphs to make the factors more explicit.

Example: object tracking
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[demo]
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• Recall the object tracking example in which we observe noisy sensor readings 0, 2, 2.

• We have observation factors oi that encourage the position Xi and the corresponding sensor reading to be nearby.

• We also have transition factors ti that encourage the positions Xi and Xi+1 to be nearby.

Maximum weight assignment

CSP objective: find the maximum weight assignment

max
x

Weight(x)

x1 x2 x3 Weight(x)

0 1 1 4

0 1 2 4

1 1 1 4

1 1 2 4

1 2 1 2

1 2 2 8

Maximum weight assignment: {x1 : 1, x2 : 2, x3 : 2} (weight 8)

But this doesn’t represent all the other possible assignments...
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• In constraint satisfaction problems, we are interested in finding the maximum weight assignment.

• For the object tracking example, we show all the assignments with non-zero weight. The maximum weight assignment here is {x1 : 1, x2 :
2, x3 : 2} with weight 8.

• However, just returning this one assignment doesn’t give us a sense of the alternatives, and how likely they are. In other words, we are not
representing our uncertainty.



Definition

Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random
variables X = (X1, . . . , Xn):

P(X = x) =
Weight(x)

Z
where Z =

∑
x′ Weight(x′) is the normalization constant.

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

Z = 4 + 4 + 4 + 4 + 2 + 8 = 26

Represents uncertainty!
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• We now introduce Markov networks to capture the uncertainty over assignments.

• We’ve done most of the hard work by defining factor graphs, which endows each assignment x = (x1, . . . , xn) with a weight Weight(x).

• We define the probability of an assignment x to be the fraction of weight relative to all assignments.

• Operationally, we first compute the normalization constant (also known as the partition function) Z, which is the sum of the weights over
all assignments.

• Then we simply divide each weight by this normalization constant to get the probability.

• So the maximum weight assignment here only has 31% of the total probability.

Marginal probabilities

Example question: where was the object at time step 2 (X2)?

Definition: Marginal probability

The marginal probability of Xi = v is given by:

P(Xi = v) =
∑

x:xi=v

P(X = x)

Object tracking example:

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

P(X2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62

P(X2 = 2) = 0.08 + 0.31 = 0.38

Note: different than max weight assignment!
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• The language of probability allows us to do more than just ask for the probability of complete assignments.

• It allows you to also ask for the marginal probability of partial assignments. In particular, we will focus on probability of single variables.
This means asking for the probability of one variable Xi while marginalizing out others. Intuitively, while we don’t ask for particular values
on the marginalized variables, they still have a influence since factors still get multiplied into the weight.

• In the object tracking example, suppose we are interested in where the object was at time step 2 only, not caring about its position at other
times.

• Then we would ask for the marginal probabilities P(X2 = 1) and P(X2 = 2). We compute these quantities by summing the probabilities of
the complete assignment that match the condition on X2.

• Interestingly, the result is that the object is 62% likely to be at position 1, even though the most likely complete assignment says the object is
at position 2! Intuitively, this is because there are multiple assignments with x2 = 1 with moderate weight (4), even though they don’t have
the maximum weight (4). There is kind of a ”strength in numbers” phenomenon.

• The lesson is that you might get different answers depending on what you’re asking.

Application: Ising model

Ising model: classic model from statistical physics to model ferromagnetism

Xi ∈ {−1,+1}: atomic spin of site i

fij(xi, xj) = exp(βxixj) wants same spin

Samples as β increases:

Figure 2 from Perez (1998)
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• A canonical example of a Markov network is the Ising model from statistical physics, which was developed by physicists in the 1920s to model
ferromagnetism.

• The idea is that you have a large set of sites, each of which can either have an up or down spin.

• Assignments in which adjacent sites tend to have the same spin (resulting in a lower energy configuration) are favored, where the strength is
given by β.

• Ising models are used to study phase transitions in physical systems. If β = 0, then the factors all evaluate to 1 independent of the
assignment. Therefore, all assignments are equally likely, and there is simply no structure; every variable is completely random (probability
1
2 up and probability 1

2 down). As β increases, there starts to be more cohesion between sites, leading to larger blobs. As β → ∞, equality
becomes more like a hard constraint.

• Here we are showing samples from the Ising model (how we do this we will talk about in a future module).



Application: image denoising

Example: image denoising

0

0 1 1

1 1

• Xi ∈ {0, 1} is pixel value in location i

• Subset of pixels are observed

oi(xi) = [xi = observed value at i]

• Neighboring pixels more likely to be same than different

tij(xi, xj) = [xi = xj ] + 1

CS221 18

• As another example, consider the problem of image denoising. This is one of the classic applications of Markov networks in computer vision
before deep learning.

• In our stylized example, suppose we have a noisy image where only some of the pixels are observed and our goal is to recover our best guess
of the clean image.

• We define a variable Xi for each pixel i ∈ {(1, 1), (1, 2), (1, 3), . . . }.

• We then define an observation factor oi on each pixel that is observed that constrains that pixel to be the observed value. For example,
o(1,1)(xi) = [xi = 1].

• Then for every pair of neighboring pixels i and j (e.g., i = (1, 1) and j = (2, 1)), we define a transition factor tij(xi, xj) that encourages the
pixel values to agree (both be 0 or both be 1). Weight 2 is given to those pairs which are the same and 1 if the pair is different.

• Note that the observation and transition factors should be reminiscent of the object tracking example, just in two dimensions. In general,
having factors that incorporate external evidence (observations) and factors that incorporate internal consistency (transitions) is a common
template for building Markov networks, and variable-based models more generally.

Summary

Markov networks = factor graphs + probability

• Normalize weights to get probability distribution

• Can compute marginal probabilities to focus on variables

CSPs Markov networks

variables random variables

weights probabilities

maximum weight assignment marginal probabilities
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• In summary, we have introduced Markov networks, which connect factor graphs with probability.

• The connection is very natural: factor graphs already provide a way of specifying non-negative weights over assignments, which gets us most
of the way there. We then normalize the weights to make them sum to 1 to get a probability distribution.

• Once we have a joint probability distribution, we can compute marginal probabilities of individual (or subsets of) variables.

• We can compare CSPs with Markov networks. Variables become random variables, which means that they have probabilities associated with
them. Instead of weights, we have their normalized versions, a.k.a., probabilities. The big difference is that instead of focusing on just finding
the maximum weight assignment, which might be not representative of the full set of possibilities, the goal is to look at marginal probabilities.

Lecture

Markov Networks: Overview

Markov Networks: Gibbs Sampling

Bayesian Networks: Overview

Bayesian Networks: Definitions
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• In this module, I will present Gibbs sampling, a simple algorithm for approximately computing marginal probabilities.



Review: Markov networks

X1 X2 X3

t1

o1

t2

o2 o3

Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random
variables X = (X1, . . . , Xn):

P(X = x) =
Weight(x)

Z
where Z =

∑
x′ Weight(x′) is the normalization constant.

Objective: compute marginal probabilities P(Xi = v) =
∑

x:xi=v P(X = x)

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

Z = 4 + 4 + 4 + 4 + 2 + 8 = 26

P(X2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62

P(X2 = 2) = 0.08 + 0.31 = 0.38
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• Recall that a Markov network is defined by a factor graph, which provides a non-negative weight to each assignment x.

• If we compute the normalization constant Z and divide, then we get a probability distribution over joint assignments.

• For the object tracking example, we can compute the normalization factor to get joint probabilities. Note that this gives us a notion of
uncertainty over the possible assignments.

• The main objective after defining a joint distribution is to compute marginal probabilities, which allow us to ask pointed questions about
variables (e.g., X2). Marginal probabilities are computed by summing the probabilities over all assignments satisfying the given condition.

Gibbs sampling

Algorithm: Gibbs sampling

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Set xi = v with prob. P(Xi = v | X−i = x−i)
(X−i denotes all variables except Xi)

Increment counti(xi)

Estimate P̂(Xi = xi) =
counti(xi)∑
v counti(v)

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

Example: sampling one variable

Weight(x ∪ {X2 : 0}) = 1 prob. 0.2

Weight(x ∪ {X2 : 1}) = 2 prob. 0.4

Weight(x ∪ {X2 : 2}) = 2 prob. 0.4

0 0.2 0.6 1

[demo]
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• Now we present Gibbs sampling, a simple algorithm for approximately computing marginal probabilities. The algorithm follows the template of
local search, where we change one variable at a time, but unlike Iterated Conditional Modes (ICM), Gibbs sampling is a randomized algorithm.

• Gibbs sampling proceeds by going through each variable Xi, considering all the possible assignments of Xi with some v ∈ Domaini, and
setting Xi = v with probability equal to the conditional probability of Xi = v given everything else.

• To perform this step, we can rewrite this expression using laws of probability: P(Xi = v | X−i = x−i) = Weight(x∪{Xi:v})
ZP(X−i=x−i

, where the

denominator is a new normalization constant. We don’t need to compute it directly. Instead, we first compute the weight of x∪ {Xi : v} for
each v, and then normalize to get a distribution. Finally we sample a v according to that distribution.

• Along the way, for each variable Xi that we’re interested in tracking, we keep a counter counti(v) of how many times we’ve seen Xi = v.

These counts can be normalized at any time to produce an estimate P̂(Xi = xi) of the marginal probability.

Application: image denoising

Example: image denoising

0

0 1 1

1 1

• Xi ∈ {0, 1} is pixel value in location i

• Subset of pixels are observed

oi(xi) = [xi = observed value at i]

• Neighboring pixels more likely to be same than different

tij(xi, xj) = [xi = xj ] + 1
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• Let’s apply Gibbs sampling to the image denoising application.

• Recall that we have a grid of pixels, a subset of which are observed, and we wish to fill in the remaining pixels.

• The unknown pixels are represented by a variable Xi for each pixel i. We have observation factors can constrain the observed pixels, and
transition factors that encourage neighboring pixels to agree.



Gibbs sampling for image denoising

0 0 0 0 0

0 1 ? 1 0

0 1 1 1 0

tij(xi, xj) = [xi = xj ] + 1

Scan through image and update each pixel given rest:

v weight P(Xi = v | X−i = x−i)

0 2 · 1 · 1 · 1 0.2

1 1 · 2 · 2 · 2 0.8
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• Let us compute the Gibbs sampling update. We go through each pixel Xi and try to update its value.

• For the given example, we consider both values 0 and 1, and multiply exactly the transition factors that depend on that value. Assume there
are no observation factors here.

• The factor returns 2 if the pixel values agree and 1 if they disagree.

• We then normalize the weights to form a distribution and then sample v.

• Intuitively, the neighbors are all trying to pull X(3,2) towards their values, and 0.8 reflects the fact that the pull towards 1 is stronger.

Image denoising demo

[see web version]
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• Let’s actually play around with Gibbs sampling for image denoising in the browser.

• Try playing with the demo by modifying the settings to get a feeling for what Gibbs sampling is doing. Each iteration corresponds to resampling
each pixel (variable).

• When you hit ctrl-enter for the first time, red and black correspond to 1 and 0, and white corresponds to unobserved.

• showMarginals allows you to either view the assignments produced or the marginals estimated from the particles (this gives you a smoother
probability estimate of what the pixel values are).

• If you decrease missingFrac to 0.3, the problem becomes easier, and the reconstruction looks pretty good.

• If you set coherenceFactor to 10, then there will be coupling between neighboring variables, and you’ll see sharper lines, although the
reconstruction is not perfect.

• If you set icm to true, we will use local search rather than Gibbs sampling, which produces very bad solutions.

Search versus sampling

Iterated Conditional Modes Gibbs sampling

maximum weight assignment marginal probabilities

choose best value sample a value

converges to local optimum marginals converge to correct answer*

*under technical conditions (sufficient condition: all weights positive), but could take exponen-
tial time
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• It is instructive to compare Gibbs sampling with its cousin, Iterated Conditional Modes (ICM). Both iteratively go through the variables and
tries to update each one of them holding the others fixed.

• Recall that the goals are different: ICM tries to find the maximum weight assignment while Gibbs sampling is trying to compute marginal
probabilities.

• Accordingly, ICM will choose the value for a variable Xi with the highest weight, whereas Gibbs sampling will use the weights to form a
distribution to sample from.

• ICM converges to local optimum, an assignment that can’t be improved on. Note that Gibbs sampling is stochastic so in some sense never
converges. However, the estimates of the marginal probabilities do in fact converge under some technical assumptions. The simplest sufficient
condition if all weights are positive, but it also suffices that the probability of Gibbs sampling going between any two assignments is positive.
A major caveat is that the time it takes to converge can be exponential in the number of variables.

• Advanced: Gibbs sampling is an instance of a Markov Chain Monte Carlo (MCMC) algorithm which generates a sequence of particles
X(1), X(2), X(3), . . . . A Markov chain is irreducible if there is positive probability of getting from any assignment to any other assignment
(now the probabilities are over the random choices of the sampler). When the Gibbs sampler is irreducible, then in the limit as t → ∞, the
distribution of X(t) converges to the true distribution P(X). MCMC is a very rich topic which we will not talk about very much here.



Summary

X1 X2 X3

t1

o1

t2

o2 o3

• Objective: compute marginal probabilities P(Xi = xi)

• Gibbs sampling: sample one variable at a time, count visitations

• More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized
procedures
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• In summary, we are trying to compute the marginal probabilities of a Markov network.

• Gibbs sampling allows us to do this by exploring all the assignments randomly, but very carefully controlled probabilities, so that the visitation
frequencies of various values converge to the right answer.

• Gibbs sampling is part of a beautiful and rich set of tools for using randomness to do inference on Markov networks, which I encourage you
to check out.

Lecture

Markov Networks: Overview

Markov Networks: Gibbs Sampling

Bayesian Networks: Overview

Bayesian Networks: Definitions
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• In this module, I’ll introduce Bayesian networks, a new framework for modeling.
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• We have talked about two types of variable-based models.

• In constraint satisfaction problems, the objective is to find the maximum weight assignment given a factor graph.

• In Markov networks, we use the factor graph to define a joint probability distribution over assignments and compute marginal probabilities.

• Now we will present Bayesian networks, where we still define a probability distribution using a factor graph, but the factors have special
meaning.

• Bayesian networks were developed by Judea Pearl in the 1980s, and have evolved into the more general notion of generative modeling that
we see today.



Markov networks versus Bayesian networks

Both define a joint probability distribution over assignments

X1 X2 X3

t1

o1

t2

o2 o3

H1 H2 H3

E1 E2 E3

Markov networks Bayesian networks

arbitrary factors local conditional probabilities

set of preferences generative process
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• Before defining Bayesian networks, it is helpful to compare and contrast Markov networks and Bayesian networks at a high-level.

• Both define a joint probability distribution over assignments, and in the end, both are backed by factor graphs.

• But the way each approaches modeling is different. In Markov networks, the factors can be arbitrary, so you should think about being able
to write down an arbitrary set of preferences and constraints and just throw them in. In the object tracking example, we slap on observation
and transition factors.

• Bayesian networks require the factors to be a bit more coordinated with each other. In particular, they should be local conditional probabilities,
which we’ll define in the next module.

• We should think about a Bayesian network as defining a generative process represented by a directed graph. In the object tracking example,
we think of an object as moving from position Hi−1 to position Hi and then yielding a noisy sensor reading Ei.

Applications

Topic modeling: unsupervised discovery of topics in text

Vision as inverse graphics: recover semantic description given image

Error correcting codes: recover data over a noisy channel

DNA matching: identify people based on relatives
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• There are a huge number of applications of Bayesian networks, or more generally, generative models. One application is topic modeling, where
the goal is to discover the hidden structure in a large collection of documents. For example, Latent Dirichlet Allocation (LDA) posits that
each document can be described by a mixture of topics.

• Another application is a very different take on computer vision. Rather than modeling the bottom-up recognition using neural networks, which
is the dominant paradigm today, we can encode the laws of physics into a graphics engine which can generate an image given a semantic
description of an object. Computer vision is ”just” the inverse problem: given an image, recover the hidden semantic information (e.g.,
objects, poses, etc.). While the ”vision as inverse graphics” perspective hasn’t been scaled up beyond restricted environments, the idea is
intriguing.

• Switching gears, in a wireless or Ethernet network, nodes must send messages (a sequence of bits) to each other, but these bits can get
corrupted along the way. The idea behind error correcting codes (Low-Density Parity Codes in particular) is that the sender also sends a set
of random parity checks on the data bits. The receiver obtains a noisy version of the data and parity bits. A Bayesian network can then be
defined to relate the original bits to the noisy bits, and the receiver can use inference (usually loopy belief propagation) to recover the original
bits.

• The final application that we’ll discuss is DNA matching. For example, Bonaparte is a software tool developed in the Netherlands that uses
Bayesian networks to match DNA based on a candidate’s family members. There are two use cases, the first one is controversial and the
second one is grim. The first use case is in forensics: given DNA found at a crime site, even if the suspect’s DNA is not in the database, one
can match it against the family members of a suspect, where the Bayesian network is structured according to the family tree of the suspect
and models the relationship between the family members’s DNA using Mendelian inheritance. While this technology has been used to solve
crime cases, there are some tricky ethical concerns about this expanded DNA matching, especially since an individual’s decision to release
their own DNA can impact the privacy of family members. The second use case is in disaster victim identification. After a big airplane crash
(e.g., Malaysia Airlines flight MH17 in the Ukraine in 2014), a victim’s DNA found at the crash site can be matched against their family
members using the same mechanism above to identify the victim.

Why Bayesian networks?

• Handle heterogeneously missing information, both at training and test time

• Incorporate prior knowledge (e.g., Mendelian inheritance, laws of physics)

• Can interpret all the intermediate variables

• Precursor to causal models (can do interventions and counterfactuals)
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• These days, it’s hard not to think about problems exclusively through the lens of standard supervised learning such as training a deep neural
network on a pile of data.. Bayesian networks operate in a different paradigm which offers several advantages that are important to understand
so that you can pick the right tool for the task.

• First, in traditional machine learning (e.g., linear models or neural networks), the input is usually of a fixed size (homogeneous). With Bayesian
networks, the types of inputs one can handle can be heterogeneous (e.g., missing features), both during training and test times.

• Second, Bayesian networks offer most leverage when you have rich prior knowledge (e.g., Mendelian inheritance, laws of physics). This
allows one to often learn from very few samples and extrapolate beyond distribution of the training data. In contrast, deep neural networks
generally requires much more data to be effective.

• Third, because Bayesian networks are often carefully constructed based on prior knowledge, the variables in the Bayesian network are
interpretable (more so that hidden units in a neural network), and you can ask questions about any of them via the laws of probability.

• Finally, Bayesian networks are an important precursor to developing causal models, which allow us to answer questions about interventions
(”what would happen if we gave this drug to this patient?”) and counterfactuals (”what would have happened if we had given this drug?”).
These are extremely tricky and deep questions that standard machine learning or any methods that only view the world through prediction
are unable to answer. For an easy introduction to some of these ideas, check out Judea Pearl’s The Book of Why.

• Finally, Bayesian networks aren’t suitable in every situation. In many vision, speech, and language problems, we have large datasets, mostly
care about prediction, and it is extremely hard to incorporate prior knowledge about these very complex domains. In such cases, Bayesian
networks have largely been supplanted with deep learning.



Roadmap: Bayesian Networks

Modeling

Definitions

Probabilistic programming

Inference

Probabilistic inference

Forward-backward

Particle filtering

Learning

Supervised learning

Smoothing

EM algorithm
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• In the remaining modules on Bayesian networks, I will first introduce a formal definition of Bayesian networks and explore some of its formal
properties. Then I’ll talk about probabilistic programming, a way to define Bayesian networks as (probabilistic) programs, which will provide
a new perspective that allows to develop more powerful models.

• Then we turn to inference, which is what we do once we have a Bayesian network. We first define probabilistic inference, the problem
of computing conditional and marginal probabilities and reduce this to the problem of inference in Markov networks. We then specialize
to Hidden Markov Models (HMMs), an important special case of Bayesian networks, and show that the forward-backward algorithm can
leverage the graph structure and do exact inference efficiently. Then we introduce particle filtering, which allows us to do approximate
inference but scale up to HMMs where variables have larger domains.

• Finally, we talk about learning Bayesian networks from data. First we show how to do supervised learning, where all the variables are
observed, which turns out to be very easy (just count and normalize). Then we show how to guard against overfitting in Bayesian networks
by smoothing. Finally, we show how to do learning where some of the variables are unobserved using the EM algorithm.

Lecture

Markov Networks: Overview

Markov Networks: Gibbs Sampling

Bayesian Networks: Overview

Bayesian Networks: Definitions

CS221 50

• In this module, I’ll present the formal definition of Bayesian networks, give a few examples, and talk about an important property called
explaining away.

Review: probability

Random variables: sunshine S ∈ {0, 1}, rain R ∈ {0, 1}

Joint distribution (probabilistic database):

P(S,R) =

s r P(S = s,R = r)

0 0 0.20

0 1 0.08

1 0 0.70

1 1 0.02

Marginal distribution:

(aggregate rows)

P(S) =
s P(S = s)

0 0.28

1 0.72

Conditional distribution:

(select rows, normalize)

P(S | R = 1) =

s P(S = s | R = 1)

0 0.8

1 0.2
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• Before introducing Bayesian networks, let’s review some basic probability. We start with an example about the weather. Suppose we have two
boolean random variables, S and R representing whether there is sunshine and whether there is rain, respectively. Think of an assignment to
(S,R) as representing a possible state of the world.

• The joint distribution specifies a probability for each assignment to (S,R) (state of the the world). We use lowercase letters (e.g., s and r)
to denote values and uppercase letters (e.g., S and R) to denote random variables. Note that P(S = s,R = r) is a probability (a number)
while P(S,R) is a distribution (represented by a table of probabilities). We don’t know what state of the world we’re in, but we know what
the probabilities are (there are no unknown unknowns). Think of the joint distribution as one giant (probabilistic) database that contains full
information about how the world works.

• Sometimes, we might only be interested in a subset of the variables, e.g., sunshine S. From the joint distribution, we can derive a marginal
distribution over that. In the case of S, we get this by summing the probabilities of the rows in the joint distribution table that share the
same value of S. The interpretation is that we are interested in (the marginal probability of) S. We don’t explicitly care about R, but we
still need to take into account R’s effect on S. We say in this case that R is marginalized out.

• Sometimes, we might observe evidence; for example, suppose we know that there’s rain (R = 1). Again from the joint distribution, we
can derive a conditional distribution of the remaining variables (S) given this evidence R = 1. We do this by selecting rows of the table
matching the condition and then normalizing the remaining probabilities so that they sum to 1. Note that this normalization constant is
exactly P(R = 1).



Review: probability

Variables: S (sunshine), R (rain), T (traffic), A (autumn)

Joint distribution (probabilistic database):

P(S,R, T,A)

Marginal conditional distribution (probabilistic inference):

• Condition on evidence (traffic, autumn): T = 1, A = 1

• Interested in query (rain?): R

P( R︸︷︷︸
query

| T = 1, A = 1︸ ︷︷ ︸
condition

)

(S is marginalized out)
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• Let us augment our running example with two other random variables, T (whether there is traffic) and A (whether it’s autumn).

• We have a joint distribution, which again can be thought of as a probabilistic database that tells us how the world works.

• Probabilistic inference is the process of answering questions against this database. In general, we can both condition on evidence and be
interested in a subset of the remaining variables at the same time.

• For example, we might condition on there being traffic and the fact that it’s autumn.

• And we might be interested in whether there is rain (called the query variable), marginalizing out sunshine.

• The set of conditioning variables, query variables, and variables that are marginalized out should form a partitioning of all the variables.

A puzzle

Problem: earthquakes, burglaries, and alarms

Earthquakes and burglaries are independent events (probability ε).

Either will cause an alarm to go off.

Suppose you get an alarm.

Does hearing that there’s an earthquake increase, decrease, or keep constant the
probability of a burglary?

Joint distribution:

P(E,B,A)

Questions:

P(B = 1 | A = 1) ? P(B = 1 | A = 1, E = 1)
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• Let’s consider a classic puzzle, which we will tackle with Bayesian networks. Suppose that in the world, earthquakes and burglaries are
independent (and hopefully rare) events, and for the sake of simplicity, assume that each one has a probability ε (say 0.05) of happening. You
have installed an alarm that will notify you if either one happens.

• Now suppose you are away on vacation and you get an alarm notification on your phone. You would expect at this point that the probability
of your home being burglarized has gone up. But suppose then you see breaking news saying that there was an earthquake near your home.
How does that change your beliefs about the burglary?

• One could try to intuit the answer, but this is risky because sometimes the right answer is counterintuitive. In this case, you might think since
earthquakes and burglaries are independent, that the probability shouldn’t change. But that would be wrong. So let’s use Bayesian networks
instead to perform this type of reasoning under uncertainty in a principled way.

• Let us try to write down this question using the language of probability. The first step is to always figure out the variables of interest, which
in this case are earthquake E, burglary B, and alarm A.

• We then have a joint distribution over these variables, which we will define later. But first the questions. We are interested in comparing the
probability of a burglary given an alarm only versus given alarm and earthquake.

Bayesian network (alarm)

B E

A

b p(b)

1 ε

0 1− ε

e p(e)

1 ε

0 1− ε

b e a p(a | b, e)
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

p(b) = ε · [b = 1] + (1− ε) · [b = 0]

p(e) = ε · [e = 1] + (1− ε) · [e = 0]

p(a | b, e) = [a = (b ∨ e)]

P(B = b, E = e,A = a)
def
= p(b)p(e)p(a | b, e)
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• Now let us define the joint distribution. Recall the first step was just to define the three variables, B (burglary), E (earthquake), and A
(alarm).

• Second, we connect up the variables to model the dependencies. Unlike in factor graphs, these dependencies are represented as directed
edges. You can intuitively think about the directionality as representing causality, though what this actually means is a more complex issue
and beyond the scope of this module.

• Third, for each variable, we specify a local conditional distribution of that variable given its parent variables. In this example, B and E
have no parents while A has two parents, B and E. This local conditional distribution is what governs how a variable is generated.

• Fourth, we define the joint distribution over all the random variables as the product of all the local conditional distributions.

• Note that we write the local conditional distributions using p, while P is reserved for the joint distribution over all random variables, which is
defined as the product.



Probabilistic inference (alarm)

Joint distribution

b e a P(B = b, E = e,A = a)

0 0 0 (1− ε)2

0 0 1 0

0 1 0 0

0 1 1 (1− ε)ε
1 0 0 0

1 0 1 ε(1− ε)
1 1 0 0

1 1 1 ε2

Questions:

P(B = 1) = ε(1− ε) + ε2 = ε

P(B = 1 | A = 1) = ε(1−ε)+ε2

ε(1−ε)+ε2+(1−ε)ε = 1
2−ε

P(B = 1 | A = 1, E = 1) = ε2

ε2+(1−ε)ε = ε

[demo]

News flash: earthquakes decrease burglaries!*

*This is not a causal statement!
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• We multiply all the local conditional distributions together to produce the joint distribution. Recall that this probability is the source of all
truth, and from it we can answer all sorts of questions.

• Let us start with the simplest query, P(B = 1): what is the probability of burglary without any evidence? We can sum up all the rows with
B = 1 to get ε.

• Now suppose we hear the alarm A = 1. Let us first filter out all the rows where A = 1 does not hold. Then we look at the sum of the
probabilities of rows where B = 1 over the sum of all the probabilities. The resulting probability of burglary is now P(B = 1 | A = 1) = 1

2−ε .

• Now let us condition on alarm (A = 1) and earthquake (E = 1). Filter out rows that don’t satisfy the condition, and look at the fraction of
probabilities of remaining rows on B = 1. The resulting probability of burglary goes down to P(B = 1 | A = 1, E = 1) = ε again.

• So in the end, observing that there’s an earthquake does actually decrease the probability of the burglary. This might be counterintuitive
because we said that burglaries and earthquakes are independent. But it’s important to not interpret this causally. Creating more earthquakes
clearly will not make the burglars disappear. When dealing with slippery questions such as these, we need a sound mathematical framework
like Bayesian networks to ensure that we get the right answers.

Explaining away

B E

A

Key idea: explaining away

Suppose two causes positively influence an effect. Conditioned on the effect, further
conditioning on one cause reduces the probability of the other cause.

P(B = 1 | A = 1, E = 1) < P(B = 1 | A = 1)

Note: happens even if causes are independent!
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• This last phenomenon is so important for reasoning under uncertainty that it has a special name: explaining away. Suppose we have two
cause variables B and E, which are parents of an effect variable A. Further, assume the causes influence the effect positively (e.g., through
the OR function).

• Let us condition on the evidence A = 1. We are trying to seek an explanation for A = 1 (what caused the alarm to go off?).

• Further conditioning on one of the causes (E = 1) decreases the probability of the other cause, because E = 1 alone explains away A = 1,
and there’s no more pressure on B.

• Note that in our setting, the probability of B = 1 returns to the original P(B = 1), but this need not be the case in general.

• Conditioning on A = 1 is important for explaining away. If you didn’t, then the probability of B = 1 would not change. You can verify for
yourself that P(B = 1 | E = 1) = P(B = 1), which just follows from the definition of B and E being independent.

Medical diagnosis

Problem: cold or allergies?

You are coughing and have itchy eyes. Do you have a cold?

C A

H I

Random variables:

cold C, allergies A, cough H, itchy eyes I

Joint distribution:

P(C = c, A = a,H = h, I = i) = p(c)p(a)p(h | c, a)p(i | a)

Questions:

P(C = 1 | H = 1) = 0.28 P(C = 1 | H = 1, I = 1) = 0.13

[demo]
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• Here is another example (a cartoon version of Bayesian networks for medical diagnosis).

• Step 1: identify all the relevant variables.

• Step 2: draw arrows between them, using prior knowledge. Using our simplistic medical knowledge, suppose that a cough can be either
because of a cold or because of allergies, but itchy eyes are generally only caused by allergies.

• Step 3: define a local conditional distribution for each variable.

• Step 4: multiply all the local conditional distributions to form the joint distribution.

• Now we have our probabilistic database and we can ask questions about it. Our motivating question is P(C,A | H = 1, I = 1).

• You can try the demo to get a quantitative answer. Note that P(C = 1 | H = 1) = 0.28, which is another example of explaining away.
Observing itchy eyes provides evidence for A, which explains away the cough (H = 1), resulting in a reduced probability of cold (C = 1).

• Note that even qualitatively reasoning about even a four-node Bayesian network can be quite subtle, let alone getting quantitative answers on
large Bayesian networks. But we can rest at ease since the laws of probability make sure that all these calculations are internally consistent
provided we defined the Bayesian network correctly (which in practice is an admittedly hard modeling task).



Bayesian network (definition)

Definition: Bayesian network

Let X = (X1, . . . , Xn) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distri-
bution over X as a product of local conditional distributions, one for each node:

P(X1 = x1, . . . , Xn = xn)
def
=

n∏
i=1

p(xi | xParents(i))
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• Without further ado, let’s define a Bayesian network formally. A Bayesian network defines a joint distribution over a set of random variables.

• Second, we have a directed acyclic graph over the variables that captures the qualitative dependencies.

• Third, we specify a local conditional distribution for each variable Xi, which is a function that specifies a distribution over Xi given an
assignment xParents(i) to its parents in the graph (possibly no parents).

• Finally, the joint distribution is simply defined to be the product of all of the local conditional distributions.

• Notationally, we use lowercase p (in p(xi | xParents(i))) to denote a local conditional distribution, and uppercase P to denote the induced joint
distribution over all variables. While we will see that the two coincide, it is important to keep these things separate in your head!

Probabilistic inference (definition)

Input

Bayesian network: P(X1, . . . , Xn)

Evidence: E = e where E ⊆ X is subset of variables

Query: Q ⊆ X is subset of variables

Output

P(Q | E = e) P(Q = q | E = e) for all values q

Example: if coughing and itchy eyes, have a cold?

P(C | H = 1, I = 1)
CS221 68

• Now given a Bayesian network representing a probabilistic database, we can answer questions on it.

• In particular, we are given a set of evidence variables E and values e. We are also given a set of query variables Q. What a probabilistic
inference algorithm should output given this is the marginal conditional distribution P(Q | E = e).

• Note that this output is a table that specifies a probability for each assignment of values to Q.

• So far, we have shown examples of probabilistic inference on small Bayesian networks. The bad news is that in general, answering arbitrary
probabilistic inference questions on arbitrary Bayesian networks is computationally intractable. The good news it that the core probabilistic
inference in Bayesian networks is identical to Markov networks (which we will see later).

Summary

B E

A

• Random variables capture state of world

• Directed edges between variables represent dependencies

• Local conditional distributions ⇒ joint distribution

• Probabilistic inference: ask questions about world

• Captures reasoning patterns (e.g., explaining away)
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• In summary, we have introduced Bayesian networks.

• It’s important to think about an assignment to random variables as capturing the state of the world.

• Directed edges represent qualitative (sometimes causal) dependencies.

• Quantitatively, we specify a local conditional distribution for each variable conditioned on its parents, and multiply them together to get a
joint distribution.

• Now we have our probabilistic database on which we can ask all sorts of questions, i.e., marginal conditional probabilities.

• Hopefully through the alarm and medical diagnosis examples, you are able to appreciate that the framework can capture intuitive or counter-
intuitive reasoning patterns such as explaining away in a mathematically sound way.



Summary: Markov and Bayesian Networks I

• Markov Networks: Factor graphs + Probability

• Gibbs sampling is an algorithm for estimating marginal probabilities

• Bayesian Networks, represent generative processes, related to Factor graphs and Markov
Networks

• Bayesian Networks Definitions: explaining away

• Next: Inference in Bayesian networks
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• In summary, we started be defining Markov Networks, which connect factor graphs with probability, useful for capturing uncertainty.

• Next, we covered Gibbs sampling for computing marginal probabilities of a Markov network

• Then, we discussed Bayesian Networks which define a generative process represented by a directed graph

• Finally, we discussed definitions in Bayesian Networks, including probabilistic inference and explaining away.

• Next Lecture, we will continue with some inference techniques for Bayesian networks, including the forward backward algorithm and particle
filtering


