
Constraint Satisfaction Problems (CSPs)

Lecture

CSPs: Overview

CSPs: Definitions

CSPs: Examples

CS221 2

• In this module, we will introduce constraint satisfaction problems (CSPs).

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

Low-level High-level

Machine learning

CS221 4

• We started with machine learning and reflex-based models, which simply produce a single output or action (classification or regression).

• Then we looked at state-based models, where we thought in terms of states, actions, and costs/rewards.

• Now we embark on our journey through variable-based models, a different modeling language, in which we will think in terms of variables,
factors, and weights.

Factor graphs

variables

X1 X2 X3

f1 f2 f3 f4

factors

Objective: find the best assignment of values to the variables

CS221 6

• All variable-based models have an underlying factor graph. Before formally defining what a factor graph is, let me first provide some intuition.

• A factor graph contains a set of variables (circle nodes), which represent unknown values that we seek to ascertain, and a set of factors
(square nodes), which determine how the variables are related to one another.

• The objective of a constraint satisfaction problem is to find the best assignment of values to the variables.

Map coloring

Question: how can we color each of the 7 provinces {red,green,blue} so that no two neighboring
provinces have the same color?

CS221 8

• Let us consider an example problem: map coloring.

• Here’s Australia. It has 7 provinces, which might be hard to see, so let’s color the provinces. How can we color the provinces with three colors
so that no two neighboring provinces have the same color?

Map coloring

(one possible solution)

CS221 10

• Here is one solution.

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

...
...

...

WA

NT

SA

Q

NSW

V

T

0

. . .

WA

NT

SA

Q

NSW

V

T

0

. . .

WA

NT

SA

Q

NSW

V

T

1
CS221 12

• How do we solve this problem algorithmically? Let’s use the hammer that we know: casting it as a search problem.

• We start with the state in which no colors are assigned. The possible actions from this state are to color one of the variables (WA) some
color.

• In general, each state contains an assignment of colors to a subset of the provinces (a partial assignment), and each action corresponds to
choosing a color for the next unassigned province.

• The leaves of the search tree are complete assignments, where every province has a color.

• Each leaf is either consistent — i.e., all neighboring provinces have different colors (1), or not (0).

• We then simply return any leaf that is consistent.

As a search problem

WA

NT

SA

Q

NSW

V

T

• State: partial assignment of colors to provinces

• Action: assign next uncolored province a compatible color

What’s missing? There’s more problem structure!

• Variable ordering doesn’t affect correctness, can optimize

• Variables are interdependent in a local way, can decompose

CS221 14

• This is a fine way to solve this problem, and in general, it shows how powerful search problems are: we don’t actually need any new machinery
to color Australia. But the question is: can we do better?

• First, the order in which we assign variables doesn’t matter for correctness. This gives us the flexibility to dynamically choose a better
ordering of the variables. That, with a bit of lookahead will allow us to dramatically improve the efficiency over naive tree search.

• Second, it’s clear that Tasmania’s color can be any of the three colors regardless of the colors on the mainland. This is an instance of
independence, and later we’ll see how to exploit this observation.

Variable-based models

Special cases:

• Constraint satisfaction problems

• Markov networks

• Bayesian networks

Key idea: variables

• Solutions to problems ⇒ assignments to variables (modeling).

• Decisions about variable ordering, etc. chosen by inference.

Higher-level modeling language than state-based models

CS221 16

• Variable-based models allow us to capture this additional structure. Variable-based models is an umbrella term that includes constraint
satisfaction problems (CSPs), Markov networks, and Bayesian networks.

• Aside: The term graphical models can be used interchangeably with variable-based models, and the term probabilistic graphical models
(PGMs) generally encompasses both Markov networks (also called undirected graphical models) and Bayesian networks (directed graphical
models).

• The unifying theme is the idea of thinking about solutions to problems as assignments of values to variables (this is the modeling part). All
the details about how to find the assignment (in particular, which variables to try first) are delegated to the inference algorithm. So the
advantage of using variable-based models over state-based models is that it’s making the algorithms do more of the work, freeing up more
time for modeling.

• An (imperfect) analogy is programming languages. Solving a problem directly by implementing an ad-hoc program is like using assembly
language. Solving a problem using state-based models is like using C. Solving a problem using variable-based models is like using Python. By
moving to a higher language, you might forgo some amount of ability to optimize manually, but the advantage is that (i) you can think at a
higher level and (ii) there are more opportunities for optimizing automatically.

• Once a new modeling framework become second nature, it is almost as if it was invisible. It’s like when you master a language, you can
”think” in it without thinking about the language.

Applications

Delivery/routing: how to assign packages to trucks to deliver to customers

Sports scheduling: when to schedule pairs of teams to minimize travel

Formal verification: ensure circuit/program works on all inputs

CS221 18

• Constraint satisfaction problems appear in many applications, most of which involve large-scale logistics, scheduling, and supply-chain man-
agement.

• Companies such as Amazon have to figure out how to put packages on vehicles to deliver them to customers to minimize cost and meet
delivery times promised to the customer. Here, the variables include the assignment of packages to vehicles, and the factors encode travel
times and costs. Ride-sharing services such as Uber and Lyft also have to figure out how to best assign drivers to riders. There are all
extensions of the classic vehicle routing problem (VRP).

• Each year, the NFL has to make a schedule of which teams play what other teams and when. The schedule should minimize travel, fit into
TV broadcast slots, be fair across teams, etc. Other scheduling problems involve assigning the courses that are offered one quarter to various
classrooms at various time slots.

• A final application is formal verification of circuits and programs. Here, the variables are the unknown inputs to a program, and the factors
encode the program/circuit execution. Then you can ask the question of whether there exists any program inputs that produce an error or
incorrect result.

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 20

• Here’s the roadmap for the rest of the modules on CSPs. First we will define constraint satisfaction problems and factor graphs formally, and
give a few examples of CSPs.

• We then talk about backtracking search, which solves the problem exactly, though it takes exponential time in the worst case. To speed up
search, we can take advantage of the fact that we can assign variables in any order to do dynamic ordering, where we heuristically figure
out which variables to assign first. Arc consistency provides an lookahead algorithm called AC-3 to eagerly prune the search space, so that
dynamic ordering can be more effective.

• Sometimes, you might not want to wait an exponential amount of time. If a crude solution suffices, one can apply approximate search
algorithms. Beam search heuristically explores a small fraction of the exponentially-sized search tree, while local search takes an initial
assignment and iteratively tries to improve it by changing one variable at a time.

Lecture

CSPs: Overview

CSPs: Definitions

CSPs: Examples

CS221 22

• In this module, we will formally define constraint satisfaction problems as well as the more general notion of a factor graph.

Factor graph example: voting

definitely

blue

B or R? must

agree

B or R? tend to

agree

B or R? leaning

red

X1 X2 X3

f1 f2 f3 f4

x1 f1(x1)

R 0

B 1

x1 x2 f2(x1, x2)

R R 1

R B 0

B R 0

B B 1

x2 x3 f3(x2, x3)

R R 3

R B 2

B R 2

B B 3

x3 f4(x3)

R 2

B 1

f1(x1) = [x1 = B] f2(x1, x2) = [x1 = x2] f3(x2, x3) = [x2 = x3] + 2 f4(x3) = [x3 = R] + 1

[demo]

CS221 24

• Let us provide an example of a factor graph.

• Suppose there are three people, each of which will vote for a color, red or blue. We know that Person 1 is dead set on blue, while Person 3
is leaning red. Person 1 and Person 2 are close friends and must vote on the same color, while Person 2 and Person 3 are acquaintances who
only weakly prefer to have the same color. The question is how each person will vote given their influences on each other?

• We can model this situation as a factor graph consisting of three variables, X1, X2, X3, each of which must be assigned red (R) or blue (B).

• We encode each of the constraints/preferences as a factor, which assigns a non-negative number based on the assignment to a subset of the
variables.

• We can either describe the factor as an explicit table, or via a function (e.g., [x1 = x2]).

• Notation: we use [condition] to represent the indicator function which is equal to 1 if the condition is true and 0 if not. Normally, this is
written 1[condition], but we drop the 1 for succinctness.

Example: map coloring

WA

NT

SA

Q

NSW

V

T

Variables:

X = (WA,NT,SA,Q,NSW,V,T)

Domaini ∈ {R,G,B}
Factors:

f1(X) = [WA 6= NT]

f2(X) = [NT 6= Q]

...

CS221 26

• Let’s revisit the map coloring example.

• For each province, we have a variable, whose domain is the three colors.

• We have one factor for each pair of neighboring provinces which returns 1 (okay) if the two colors are not equal and 0 otherwise.

Factor graph

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi ∈ Domaini

Factors:

f1, . . . , fm, with each fj(X) ≥ 0

CS221 28

• Now we proceed to the general definition. A factor graph consists of a set of variables and a set of factors: (i) n variables X1, . . . , Xn, which
are represented as circular nodes in the graphical notation; and (ii) m factors (also known as potentials) f1, . . . , fm, which are represented as
square nodes in the graphical notation.

• Each variable Xi can take on values in its domain Domaini. Each factor fj is a function that takes an assignment x to all the variables and
returns a non-negative number representing how good that assignment is (from the factor’s point of view). Usually, each factor will depend
only on a small subset of the variables.

Factors

Definition: scope and arity

Scope of a factor fj : set of variables it depends on.

Arity of fj is the number of variables in the scope.

Unary factors (arity 1); Binary factors (arity 2).

Constraints are factors that return 0 or 1.

WA

NT

SA

Q

NSW

V

T

Example: map coloring

Scope of f1(X) = [WA 6= NT] is {WA,NT}
f1 is a binary constraint

CS221 30

• The key aspect that makes factor graphs useful is that each factor fj only depends on a subset of variables, called the scope.

• The arity of the factors is generally small (think 1 or 2).

• Factors that return 0 or 1 are called constraints. A constraint is satisfied iff a constraint returns 1.

Assignment weights example: voting

x1 f1(x1)

R 0

B 1

x1 x2 f2(x1, x2)

R R 1

R B 0

B R 0

B B 1

x2 x3 f3(x2, x3)

R R 3

R B 2

B R 2

B B 3

x3 f4(x3)

R 2

B 1

x1 x2 x3 Weight

R R R 0 · 1 · 3 · 2 = 0

R R B 0 · 1 · 2 · 1 = 0

R B R 0 · 0 · 2 · 2 = 0

R B B 0 · 0 · 3 · 1 = 0

B R R 1 · 0 · 3 · 2 = 0

B R B 1 · 0 · 2 · 1 = 0

B B R 1 · 1 · 2 · 2 = 4

B B B 1 · 1 · 3 · 1 = 3

[demo]
CS221 32

• An assignment specifies a value for each variable, which is a candidate solution.

• Recall that the factors specify local interactions between variables.

• For each assignment, we get its weight, which is defined to be the product over each factor evaluated on that assignment.

• Each factor makes a contribution to the weight. Note that any factor has veto power: if it returns zero, then the weight of the entire
assignment is irrecoverably zero.

• Think of all the factors chiming in on their opinion of x. We multiply all these opinions together to get the global opinion.

• In this setting, the maximum weight assignment is (B,B,R), which has a weight of 4. This is the assignment we wish to return.

Example: map coloring

WA

NT

SA

Q

NSW

V

T

Assignment:
x = {WA : R,NT : G,SA : B,Q : R,NSW : G,V : R,T : G}

Weight:

Weight(x) = 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 1

Assignment:
x′ = {WA : R,NT : R,SA : B,Q : R,NSW : G,V : R,T : G}

Weight:

Weight(x′) = 0 · 0 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0

CS221 34

• Consider the map coloring example. Here we are writing an assignment as a dictionary from variable (name) to value.

• For the first assignment, all the constraints (factors) are satisfied and evaluates to 1.

• For the second assignment, WA and NT have the same color (red), so [WA 6= NT] = 0. This zeros out the weight for the entire assignment.

Assignment weights

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
m∏
j=1

fj(x)

An assignment is consistent if Weight(x) > 0.

Objective: find the maximum weight assignment

argmax
x

Weight(x)

A CSP is satisfiable if maxx Weight(x) > 0.

CS221 36

• Formally, the weight of an assignment x is the product of all the factors applied to that assignment (
∏m

j=1 fj(x)). We say that an assignment
is consistent if it has a non-zero weight.

• The objective in constraint satisfaction problem (what it means to solve a CSP) is to find the maximum weight assignment. A CSP is
satisfiable if there exists a consistent assignment.

• Note: strictly speaking, a CSP only contains factors which are constraints (that return 0 or 1), but we consider a more general version of
CSPs where weights can be arbitrary.

• Note: do not confuse the term ”weight” in the context of factor graphs with the ”weight vector” in machine learning.

Constraint satisfaction problems

Boolean satisfiability (SAT):

variables are booleans, factors are logical formulas [X1 ∨ ¬X2 ∨X5]

Linear programming (LP):

variables are reals, factors are linear inequalities [X2 + 3X5 ≤ 1]

Integer linear programming (ILP):

variables are integers, factors are linear inequalities

Mixed integer programming (MIP):

variables are reals and integers, factors are linear inequalities

CS221 38

• Constraint satisfaction problems are a general umbrella term that captures several important special cases, which are widely studied in the
mathematical programming community.

• In SAT, all variables are boolean-valued and factors (constraints) are logical formulas. The goal is just to find any consistent assignment.
While SAT is NP-complete, there has been extraordinary progress in SAT solving, and we can routinely solve SAT instances much larger than
theory would predict.

• In linear programming, the variables are real-valued, and factors are linear inequalities. These problems can be solved efficiently using
specialized methods (e.g., the simplex algorithm)

• ILPs and MIPs are hard to solve in general because they include integer values.

Summary

X1 X2 X3

f1 f2 f3 f4

Variables, factors: specify locally

Weight({X1 : B, X2 : B, X3 : R}) = 1 · 1 · 2 · 2 = 4

Assignments, weights: optimize globally

CS221 40

• In summary, we have formally defined factor graphs, where variables represent unknown quantities, and factors specify preferences for partial
assignments. These allow us to specify preferences in a modular way: just ”throw in” any desiderata you have.

• The weight of an assignment is the product of all the factors. The objective in solving a CSP is to find the maximum weight assignment,
which is a global notion that must take into account all the factors at once.

Lecture

CSPs: Overview

CSPs: Definitions

CSPs: Examples

CS221 42

• In this module, we will walk through some examples of how to take problems and model them as constraint satisfaction problems.

Example: LSAT question

Three sculptures (A, B, C) are to be exhibited in rooms 1, 2 of an art gallery.

The exhibition must satisfy the following conditions:

• Sculptures A and B cannot be in the same room.

• Sculptures B and C must be in the same room.

• Room 2 can only hold one sculpture.

[demo]

CS221 44

• The LSAT is a standardized test for law school which features questions that are logic puzzles. These can usually be formalized as a constraint
satisfaction problem. CSPs offer a formulaic way of tackling these problems which could even be automated (though the hard part for
computers is translating the English into the CSP, whereas the hard part for the human is actually solving the CSP!).

• Here is an example of an LSAT question. We will use Javascript inference demo to solve this problem.

Example: object tracking

Problem: object tracking

(O) Noisy sensors report positions: 0, 2, 2.

(T) Objects can’t teleport.

What trajectory did the object take?

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
X

i

CS221 46

• In this example, consider the problem of object tracking. For instance, for autonomous driving, objects such as cars and pedestrians must be
tracked to know where not to drive.

• Here, at each discrete time step i, we are given some noisy information about where the object might be. For example, this noisy information
could be the video frame at time step i. The goal is to answer the question: what trajectory did the object take?

• To simplify, suppose we consider an object moving in 1D and we have a sensor that tells us an approximate position at each time step. We
observe 0, 2, 2 from this sensor.

Example: object tracking CSP

Factor graph:

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi − xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]

• Variables Xi ∈ {0, 1, 2}: position of object at time i

• Observation factors oi(xi): noisy information compatible with position

• Transition factors ti(xi, xi+1): object positions can’t change too much

CS221 48

• Let’s try to model this problem. Always start by defining the variables: these are the quantities which we don’t know. In this case, it’s the
positions of the object at each time step: X1, X2, X3 ∈ {0, 1, 2}.

• Now let’s think about the factors, which need to capture two things. First, transition factors make sure physics isn’t violated (e.g., object
positions can’t change too much). Second, observation factors make sure the hypothesized positions Xi are compatible with the noisy
information. Note that these numbers returned by the factors are just numbers, not necessarily probabilities.

• Having modeled the problem as a factor graph, we can now ask for the maximum weight assignment, which gives us the most likely trajectory
for the object.

• Click on the the [track] demo to see the definition of this factor graph as well as the maximum weight assignment, which is [1, 2, 2]. Note
that this trajectory is a smoothed version of the observations, which assumes that the first sensor reading was inaccurate.

Example: event scheduling

1

2

3

1

2

3

4

event e time slot t

Problem: Event scheduling

Have E events and T time slots

(C1) Each event e must be put in exactly one time slot

(C2) Each time slot t can have at most one event

(C3) Event e allowed in time slot t only if (e, t) ∈ A

CS221 50

• Scheduling is a broad class of problems for which CSPs are well suited. We will consider a simplified scheduling problem and show that there
are sometimes multiple ways to cast the problem as a CSP.

• Consider a simple scheduling problem, where we have E events that we want to schedule into T time slots. There are three types of
requirements: (C1) every event must be scheduled into a time slot; (C2) every time slot can have at most one event (zero is possible); and
(C3) we are given a fixed set A of (event, time slot) pairs which are allowed.

Example: event scheduling (formulation 1)

1

2

3

1

2

3

4

event e time slot t Problem: Event scheduling

Have E events and T time slots

(C1) Each event e must be put in exactly one time slot

(C2) Each time slot t can have at most one event

(C3) Event e allowed in time slot t only if (e, t) ∈ A

CSP formulation 1:

• Variables: for each event e, Xe ∈ {1, . . . , T}; satisfies (C1)

• Constraints (only one event per time slot): for each pair of events e 6= e′, enforce
[Xe 6= Xe′]; satisfies (C2)

• Constraints (only scheduled allowed times): for each event e, enforce [(e,Xe) ∈ A];
satisfies (C3)

CS221 52

• The first formulation is perhaps the more natural one. We make a variable Xe for each event, whose value will be the time slot that the event
is scheduled into. Since each variable can only take on one value, we automatically satisfy (C1), the requirement that every event must be
put in exactly one time slot.

• However, we need to make sure no two events end up in the same time slot (C2). To do this, we can create a binary constraint between every
pair of distinct event variables Xe and X ′

e that enforces their values to be different (Xe 6= Xe′).

• Finally, to deal with the requirement that an event is scheduled only in allowed time slots (C3), we just need to add a unary constraint for
each variable saying that the time slot Xe that’s chosen for that event is allowed.

• Note that we end up with E variables with domain size T , and O(E2) binary constraints.

Example: event scheduling (formulation 2)

1

2

3

1

2

3

4

event e time slot t Problem: Event scheduling

Have E events and T time slots

(C1) Each event e must be put in exactly one time slot

(C2) Each time slot t can have at most one event

(C3) Event e allowed in time slot t only if (e, t) ∈ A

CSP formulation 2:

• Variables: for each time slot t, Yt ∈ {1, . . . , E} ∪ {∅}; satisfies (C2)

• Constraints (each event is scheduled exactly once): for each event e, enforce [Yt =
e for exactly one t]; satisfies (C1)

• Constraints (only schedule allowed times): for each time slot t, enforce [Yt = ∅ or (Yt, t) ∈
A]; satisfies (C3)

CS221 54

• Alternatively, we can take the perspective of the time slots and ask which event was scheduled in each time slot. So we introduce a variable
Yt for each time slot t which takes on a value equal to one of the events or none (∅); this automatically takes care of (C2).

• Unlike the first formulation, we don’t get for free the requirement that each event is put in exactly one time slot (C1). To add it, we introduce
E constraints, one for each event. Each constraint needs to depend on all T variables and check that the number of time slots t which have
event e assigned to that slot (Yt = e) is exactly 1.

• Finally, we add T constraints, one for each time slot t enforcing that if there was an event scheduled there (Yt 6= ∅), then it better be allowed
according to A.

• With this formulation, we have T variables with domain size E + 1, and E T -ary constraints. One can show that each T -ary constraints
can be converted into O(T) binary constraints with O(T) variables. After this transformation, the resulting formulation has T variables with
domain size E + 1, O(ET) variables with domain size O(1) and O(ET) binary constraints.

• Which one is better? Since T ≥ E is required for the existence of a consistent solution, the first formulation is better.

• But if we were to add another constraint relating adjacent time slots (e.g., the courses assigned two adjacent slots should have topic overlap),
then the second formulation would make it easier.

Example: program verification

def foo(x, y):

a = x * x

b = a + y * y

c = b - 2 * x * y

return c

Specification: c >= 0 for all x and y

CSP formulation:

• Variables: x, y, a, b, c

• Constraints (program statements): [a = x2], [b = a+ y2], [c = b− 2xy]

Note: program (= is assignment), CSP (= is mathematical equality)

• Constraint (negation of specification): [c < 0]

Program satisfies specification iff CSP has no consistent assignment

CS221 56

• In our next example, we consider formal verification of programs. You are probably used to the idea of writing unit tests to check whether
a computer program is correct. However, just because your tests pass doesn’t mean that your program is correct, and you’re never sure if
you’ve covered all the cases. The idea behind formal verification is to write down a specification, which you want to verify.

• In this example, we have a Python function foo that computes some value c based on two inputs x and y. We want to verify the specification
that the return value will always be non-negative for all possible inputs. (With some simple algebra, you can see that foo actually computes
(x− y)2, which is indeed non-negative.)

• We can use CSPs to encode the verification problem as follows. First, we create variables for the inputs and intermediate values computed
in the Python program.

• Then we add a constraint for each program statement which asserts that the values are computed correctly.

• Finally, we add a constraint which is the negation of the specification. This is because solving a CSP only looks for the existence of an
assignment. So here we are asking the CSP to look for a counterexample to the specification. If a consistent assignment is found, then we
say that the program fails to satisfy the specification. If no consistent assignment is found, then the program satisfies the specification.

• It is important to note that these constraints look like the assignment statements in Python, but they are mathematically different operations.
In Python, ”=” is the assignment operator and is executed to set the variable on the left-hand side. In the CSP, ”=” is the mathematical
equality relation that, given a value for the variables on both the left-hand side and the right-hand side, returns whether this setting is valid
or not.

• The ramification of this is rather interesting: While you can only run the Python program forward, the CSP factors have no directionality: they
just relate the variables on the left-hand-side to the variables on the right-hand-side. That means the CSP solver can even ”work backwards”
from the specification (which is a constraint on the final program output).

Summary

• Decide on variables and domains

• Translate each desideratum into a set of factors

• Try to keep CSP small (variables, factors, domains, arities)

• When implementing each factor, think in terms of checking a solution rather than com-
puting the solution

CS221 58

• We have seen a few examples of taking a real-world problem and creating a CSP to solve this problem, which is the process of modeling.

• Generally, you want to first nail down the variables and domains, and make sure that an assignment to these variables provides the result of
interest.

• Then we examine the desiderata and convert them into factors. One nice thing about CSPs is that this process can often done in parallel:
each desideratum maps onto to a set of factors, which are just thrown into the set of all factors.

• There are sometimes multiple ways of creating a CSP that will do the job, but the different CSPs might differ in terms of computational and
memory efficiency. It’s generally a good idea to keep the CSP small (though there isn’t really any rigorous characterization of smallness that
translates directly to computational efficiency).

• Finally, modeling with CSPs requires a different mindset than normal programming, which is most salient in the program verification example.
While the factors look like mini-programs, they need to check any given solution rather than computing the right solution. It is the job of the
inference algorithm to compute the solution.

Overall Summary

• Constraint satisfaction problems as Factor graphs

• Definitions: variables factors, assignments, weights

• Examples: tracking, scheduling, program verification

• Next: Solving CSPs

CS221 60

• In summary, we started be defining constraint satisfaction problems as factor graphs

• Next, we covered some basic definitions, including variables factors, assignments and weights

• Then, we discussed example constructions of CSPs as factor graphs, including tracking, scheduling, and program verification

• Next Lecture, we will cover methods for solving CSPs

