
Constraint Satisfaction Problems (CSPs)

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 2

• A quick reminder of the roadmap for the modules on CSPs. In the previous lecture, we defined constraint satisfaction problems and factor
graphs formally, and gave a few examples of CSPs.

• Today, we will talk about backtracking search, which solves the problem exactly, though it takes exponential time in the worst case. To speed
up search, we can take advantage of the fact that we can assign variables in any order to do dynamic ordering, where we heuristically figure
out which variables to assign first. Arc consistency provides an lookahead algorithm called AC-3 to eagerly prune the search space, so that
dynamic ordering can be more effective.

• Sometimes, you might not want to wait an exponential amount of time. If a crude solution suffices, one can apply approximate search
algorithms. Beam search heuristically explores a small fraction of the exponentially-sized search tree, while local search takes an initial
assignment and iteratively tries to improve it by changing one variable at a time.

Review: CSPs

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi ∈ Domaini

Factors:

f1, . . . , fm, with each fj(X) ≥ 0

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
m∏
j=1

fj(x)

Objective:

argmax
x

Weight(x)

CS221 4

• Recall that a constraint satisfaction problem is defined by a factor graph, where we have a set of variables and a set of factors. Each assignment
of values to variables has a weight, and the objective is to find the assignment with the maximum weight.

Map coloring

(one possible solution)

CS221 6

• Our running example will be the map coloring problem introduced in the previous lecture. How can we color the 7 states and territories of
Australia with three colors so that no two neighboring provinces have the same color?

Example: map coloring

WA

NT

SA

Q

NSW

V

T

Variables:

X = (WA,NT,SA,Q,NSW,V,T)

Domaini ∈ {R,G,B}
Factors:

f1(X) = [WA 6= NT]

f2(X) = [NT 6= Q]

...

CS221 8

• We represent the map coloring problem by a factor graph.

• For each province, we have a variable, whose domain is the three colors.

• We have one factor for each pair of neighboring provinces which returns 1 (okay) if the two colors are not equal and 0 otherwise.

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 10

• In the previous module, we spent some time with understanding CSPs from a modeling perspective.

• In this module, I will present an algorithm to perform inference (i.e., to solve a CSP) based on backtracking search.

• In particular, we will speed up vanilla backtracking search with dynamic ordering, where we prioritize which variables and values to process
first.

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

...
...

...

WA

NT

SA

Q

NSW

V

T

0

. . .

WA

NT

SA

Q

NSW

V

T

0

. . .

WA

NT

SA

Q

NSW

V

T

1
CS221 12

• Our starting point is backtracking search, where each node represents a partial assignment of values to a subset of the variables, and each
child node represents an extension of the partial assignment.

• The leaves of the search tree represent complete assignments.

• We can simply explore the whole search tree, compute the weight of each complete assignment (leaf), and keep track of the maximum weight
assignment.

• However, we will show that incrementally computing the weight along the way can be much more efficient.

Partial assignment weights

Idea: compute weight of partial assignment as we go

WA

NT

SA

Q

NSW

V

T

WA NT SA Q NSW V T

[WA 6= NT]
[WA 6= SA]

[NT 6= SA]

[NT 6= Q]

[SA 6= Q]

[SA 6= NSW]

[Q 6= NSW]

[SA 6= V]

[NSW 6= V]

• Recall that the weight of an assignment is the product of all the factors.

• We define the weight of a partial assignment to be the product of all the factors that we can evaluate, namely those whose scope includes
only assigned variables.

• For example, if only WA and NT are assigned, the weight is just value of the single factor between them.

• When we assign a new variable a value, the weight of the new extended assignment is the old weight times all the factors that depend on the
new variable and only previously assigned variables.

Dependent factors

• Partial assignment (e.g., x = {WA : R,NT : G})

WA

NT

SA

Q

NSW

V

T

Definition: dependent factors

Let D(x,Xi) be set of factors depending on Xi and x but not on unassigned variables.

D({WA : R,NT : G},SA) = {[WA 6= SA], [NT 6= SA]}

CS221 16

• Formally, we will use D(x,Xi) to denote this set of these factors, which we will call dependent factors.

• For example, if we assign SA, then D(x,SA) contains two factors: the one between SA and WA and the one between SA and NT.

Backtracking search

Algorithm: backtracking search

Backtrack(x,w,Domains):

• If x is complete assignment: update best and return

• Choose unassigned VARIABLE Xi

• Order VALUES Domaini of chosen Xi

• For each value v in that order:

• δ ←
∏

fj∈D(x,Xi)

fj(x ∪ {Xi : v})

• If δ = 0: continue

• Domains′ ← Domains via LOOKAHEAD

• If any Domains′i is empty: continue

• Backtrack(x ∪ {Xi : v}, wδ,Domains′)

CS221 18

• Now we are ready to present the full backtracking search, which is a recursive procedure that takes in a partial assignment x, its weight w,
and the domains of all the variables Domains = (Domain1, . . . ,Domainn).

• If the assignment x is complete (all variables are assigned), then we update our statistics based on what we’re trying to compute: We can
increment the total number of assignments seen so far, check to see if x is better than the current best assignment that we’ve seen so far
(based on w), etc. (For CSPs where all the weights are 0 or 1, we can stop as soon as we find one consistent assignment, just as in DFS for
search problems.)

• Otherwise, we choose an unassigned variable Xi. Given the choice of Xi, we choose an ordering of the values of that variable Xi. Next,
we iterate through all the values v ∈ Domaini in that order. For each value v, we compute δ, which is the product of the dependent factors
D(x,Xi); recall this is the multiplicative change in weight from assignment x to the new assignment x ∪ {Xi : v}. If δ = 0, that means a
constraint is violated, and we can ignore this partial assignment completely, because multiplying more factors later on cannot make the weight
non-zero.

• We then perform lookahead, removing values from the domains Domains to produce Domains′. This is not required (we can just use
Domains′ = Domains), but it can make our algorithm run faster. (We’ll see one type of lookahead in the next slide.)

• Finally, we recurse on the new partial assignment x ∪ {Xi : v}, the new weight wδ, and the new domain Domains′.

• If we choose an unassigned variable according to an arbitrary fixed ordering, order the values arbitrarily, and do not perform lookahead, we
get the basic tree search algorithm that we would have used if we were thinking in terms of a search problem. We will next start to improve
the efficiency by exploiting properties of the CSP.

Lookahead: forward checking

Key idea: forward checking (one-step lookahead)

• After assigning a variable Xi, eliminate inconsistent values from the domains of
Xi’s neighbors.

• If any domain becomes empty, return.

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

Inconsistent!

CS221 20

• First, we will look at forward checking, which is a way to perform a one-step lookahead.

• For each variable, we visualize its domain, which is the set of values that that variable could still take on given the partial assignment.

• As soon as we assign a variable (e.g., WA = R), we can pre-emptively remove inconsistent values from the domains of neighboring variables
(i.e., those that share a factor).

• If we get to a point where some variable has an empty domain, then we can stop and backtrack immediately, since there’s no possible way
to assign a value to that variable which is consistent with the previous partial assignment.

• In this example, after Q is assigned blue, we remove inconsistent values (blue) from SA’s domain, emptying it. At this point, we need not
even recurse further, since there’s no way to extend the current assignment. We would then instead try assigning Q to red.

• Note that what is being visualized here is just one path down the search tree.

• Later, we will look at AC-3, which will allow us to lookahead even more to eliminate more values from the domains.

Choosing an unassigned variable

WA

NT

SA

Q

NSW

V

T

Which variable to assign next?

Key idea: most constrained variable

Choose variable that has the smallest domain.

This example: SA (has only one value)

CS221 22

• Now let us look at the problem of choosing an unassigned variable.

• Intuitively, we want to choose the variable which is most constrained, that is, the variable whose domain has the fewest number of remaining
valid values (based on forward checking), because those variables yield smaller branching factors.

• Note that this is just a heuristic.

Ordering values of a selected variable

What values to try for Q?

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

2 + 2 + 2 = 6 consistent values 1 + 1 + 2 = 4 consistent values

Key idea: least constrained value

Order values of selected Xi by decreasing number of consistent values of neighboring
variables.

CS221 24

• Once we’ve selected an unassigned variable Xi, we need to figure out which order to try the different values in. The principle we will follow
is to first try values which are less constrained.

• There are several ways we can think about measuring how constrained a variable is, but for the sake of concreteness, here is the heuristic
we’ll use: just count the number of values in the domains of all neighboring variables (those that share a factor with Xi).

• If we color Q red, then we have 2 valid values for NT, 2 for SA, and 2 for NSW. If we color Q blue, then we have only 1 for NT, 1 for SA,
and 2 for NSW. Therefore, red is preferable (6 total valid values versus 4).

• The intuition is that we want values which impose the fewest number of constraints on the neighbors, so that we are more likely to find a
consistent assignment.

When to fail?

WA

NT

SA

Q

NSW

V

T

Most constrained variable (MCV):

• Must assign every variable

• If going to fail, fail early ⇒ more pruning

Least constrained value (LCV):

• Need to choose some value

• Choose value that is most likely to lead to solution
CS221 26

• The most constrained variable and the least constrained value heuristics might seem at odds with each other, but this is only a superficial
difference.

• An assignment requires setting every variable, whereas for each variable we only need to choose some value.

• Therefore, for variables, we want to try to detect failures as early as possible; we’ll have to confront those variables sooner or later anyway).

• For values, we want to steer away from possible failures because we might not have to consider those other values if we find a happy path.

When do these heuristics help?

• Most constrained variable: useful when some factors are constraints (can prune assign-
ments with weight 0)

[x1 = x2] [x2 6= x3] + 2

• Least constrained value: useful when all factors are constraints (all assignment weights
are 1 or 0)

[x1 = x2] [x2 6= x3]

• Forward checking: needed to prune domains to make heuristics useful!

CS221 28

• Most constrained variable is useful for finding maximum weight assignments as long as there are some factors which are constraints (return 0
or 1). This is because we only save work if we can prune away assignments with zero weight, and this only happens with violated constraints
(weight 0).

• On the other hand, least constrained value only makes sense if all the factors are constraints. In general, ordering the values makes sense
if we’re going to just find the first consistent assignment. If there are any non-constraint factors, then we need to look at all consistent
assignments to see which one has the maximum weight. Analogy: think about when depth-first search is guaranteed to find the minimum
cost path.

Summary

Algorithm: backtracking search

Backtrack(x,w,Domains):

• If x is complete assignment: update best and return

• Choose unassigned VARIABLE Xi (MCV)

• Order VALUES Domaini of chosen Xi (LCV)

• For each value v in that order:

• δ ←
∏

fj∈D(x,Xi)

fj(x ∪ {Xi : v})

• If δ = 0: continue

• Domains′ ← Domains via LOOKAHEAD (forward checking)

• If any Domains′i is empty: continue

• Backtrack(x ∪ {Xi : v}, wδ,Domains′)

CS221 30

• In conclusion, we have presented backtracking search for finding the maximum weight assignment in a CSP, with some bells and whistles.

• Given a partial assignment, we first choose an unassigned variable Xi. For this, we use the most constrained variable (MCV) heuristic, which
chooses the variable with the smallest domain.

• Next we order the values of Xi using the least constrained value (LCV) heuristic, which chooses the value that constrains the neighbors of
Xi the least.

• We multiply all the new factors to get δ.

• Then we perform lookahead (forward checking) to prune down the domains, so that MCV and LCV can work on the latest information.

• Finally, we recurse with the new partial assignment.

• All of these heuristics aren’t guaranteed to speed up backtracking search, but can often make a big difference in practice.

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 32

• In this module, we will introduce the notion of arc consistency, which will lead us to a lookahead algorithm called AC-3 for pruning domains
and speeding up backtracking search.

Arc consistency: example

Example: numbers

Before enforcing arc consistency on Xi:

Xi ∈ Domaini = {1, 2, 3, 4, 5}
Xj ∈ Domainj = {1, 2}
Factor: [Xi +Xj = 4]

After enforcing arc consistency on Xi:

Xi ∈ Domaini = {2, 3}

Xi 1 2 3 4 5

Xj 1 2

CS221 34

• To build up to AC-3, we need to introduce the idea of arc consistency.

• To enforce arc consistency on Xi with respect to Xj , we go through each of the values in the domain of Xi and remove it if there is no value
in the domain of Xj that is consistent with Xi.

• For example, Xi = 4 is ruled out because no value Xj ∈ {1, 2, 3, 4, 5} satisfies Xi +Xj = 4.

Arc consistency

Definition: arc consistency

A variable Xi is arc consistent with respect to Xj if for each xi ∈ Domaini, there
exists xj ∈ Domainj such that f({Xi : xi, Xj : xj}) 6= 0 for all factors f whose
scope contains Xi and Xj .

Algorithm: enforce arc consistency

EnforceArcConsistency(Xi, Xj): Remove values from Domaini to make Xi arc con-
sistent with respect to Xj .

CS221 36

• Formally, a variable Xi is arc consistent with respect to Xj if every value in the domain of Xi has some potential partner in the domain of
Xj .

• Enforcing arc consistency just makes it so.

AC-3 (example)

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

• The AC-3 algorithm simply enforces arc consistency until no domains change. Let’s walk through this example.

• We start with the empty assignment.

• Suppose we assign WA to R. Then we enforce arc consistency on the neighbors of WA. Those domains change, so we enforce arc consistency
on their neighbors, but nothing changes. Note that at this point AC-3 produces the same output as forward checking.

• We recurse and suppose we now pick NT and assign it G. Then we enforce arc consistency on the neighbors of NT (which is forward checking),
SA, Q, NSW.

• AC-3 converges at this point, but note how much progress we’ve made: we have have nailed down the assignment for all the variables (except
T)!

• Importantly, though we’ve touched all the variables, we are still at the NT node in the search tree. We’ve just paved the way, so that when
we recurse, there’s only one value to try for SA, Q, NSW, and V!

AC-3

Forward checking: when assign Xj : xj , set Domainj = {xj} and enforce arc consistency on
all neighbors Xi with respect to Xj

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

S ← {Xj}.
While S is non-empty:

Remove any Xj from S.

For all neighbors Xi of Xj :

Enforce arc consistency on Xi w.r.t. Xj .

If Domaini changed, add Xi to S.

Xj Xi

CS221 40

• In forward checking, when we assign a variable Xi to a value, we are actually enforcing arc consistency on the neighbors of Xi with respect
to Xi.

• Why stop there? AC-3 doesn’t. In AC-3, we start by enforcing arc consistency on the neighbors of Xi (forward checking). But then, if the
domains of any neighbor Xj changes, then we enforce arc consistency on the neighbors of Xj , etc.

• Note that unlike BFS graph search, a variable could get added to the set multiple times because its domain can get updated more than once.
More specifically, we might enforce arc consistency on (Xi, Xj) up to D times in the worst case, where D = max1≤i≤n |Domaini| is the size
of the largest domain. There are at most m different pairs (Xi, Xj) and each call to enforce arc consistency takes O(D2) time. Therefore,
the running time of this algorithm is O(ED3) in the very worst case where E is the number of edges (though usually, it’s much better than
this).

Limitations of AC-3

• AC-3 isn’t always effective:

WA

NT

SA

• No consistent assignments, but AC-3 doesn’t detect a problem!

• Intuition: if we look locally at the graph, nothing blatantly wrong...

CS221 42

• The previous example showed that AC-3 essentially solves the CSP, but this is too good to be true in general.

• Here is an example of a simplified factor graph, where running AC-3 won’t prune any of the domains. While the domains are not empty, there
is no solution.

• AC-3 really only spot checks the domains locally. Locally, everything looks fine, even though there’s no global solution (impossible to assign
two colors to 3 provinces).

• Advanced: We could generalize arc consistency to fix this problem. Instead of looking at every 2 variables and the factors between them,
we could look at every subset of k variables, and check that there’s a way to consistently assign values to all k, taking into account all the
factors involving those k variables. However, there is a substantial cost to doing this (the running time is exponential in k in the worst case),
so generally arc consistency (k = 2) is good enough.

Summary

• Enforcing arc consistency: make domains consistent with factors

• Forward checking: enforces arc consistency on neighbors

• AC-3: enforces arc consistency on neighbors and their neighbors, etc.

• Lookahead very important for backtracking search!

CS221 44

• In summary, we presented the idea of enforcing arc consistency, which prunes domains based on information from a neighboring variable.

• After assigning a variable, forward checking enforces arc consistency on its neighbors, while AC-3 does it to the neighbors of neighbors, etc.

• Recall that AC-3 (or any lookahead algorithm) is used in the context of backtracking search to reduce the branching factor and keeps the
dynamic ordering heuristics accurate. It can make a big difference!

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 46

• In this module, we will discuss beam search, a simple heuristic algorithm for find an approximate maximum weight assignments efficiently
without incurring the full cost of backtracking search.

Example: object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
X

i

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi − xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]

CS221 48

• Recall the object tracking example in which we observe noisy sensor readings 0, 2, 2.

• We have observation factors oi that encourage the position Xi and the corresponding sensor reading to be nearby.

• We also have transition factors ti that encourage the positions Xi and Xi+1 to be nearby.

Backtracking search

CS221 50

• Backtracking search in the worst case performs an exhaustive DFS of the entire search tree, which can take a very very long time. How do
we avoid this?

Greedy search
• One option is to simply not backtrack!

• Pictorially, at each point in the search tree, we choose the option that seems myopically best, and march down one thin slice of the search
tree, never looking back.

Greedy search

Algorithm: greedy search

Partial assignment x← {}
For each i = 1, . . . , n:

Extend:

Compute weight of each xv = x ∪ {Xi : v}
Prune:

x← xv with highest weight

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:1})]

CS221 54

• Specifically, we assume we have a fixed ordering of the variables. As in backtracking search, we maintain a partial assignment x and its
weight. We consider extending x to include Xi : v for all possible values v ∈ Domaini. Then instead of recursing on all possible values of v,
we just commit to the best one according to the weight of the new partial assignment x ∪ {Xi : v}.

• It’s important to realize that ”best” here is only with respect to the weight of the partial assignment x ∪ {Xi : v}. The greedy algorithm is
by no means guaranteed to find the globally optimal solution. Nonetheless, it is incredibly fast and sometimes good enough.

• In the demo, you’ll notice that greedy search produces a suboptimal solution.

Beam search

Beam size K = 4

• The problem with greedy is that it’s too myopic. So a natural solution is to keep track of more than just the single best partial assignment
at each level of the search tree. This is exactly beam search, which keeps track of (at most) K candidates (K is called the beam size). It’s
important to remember that these candidates are not guaranteed to be the K best at each level (otherwise greedy would be optimal).

Beam search

Idea: keep ≤ K candidate list C of partial assignments

Algorithm: beam search

Initialize C ← [{}]
For each i = 1, . . . , n:

Extend:

C ′ ← {x ∪ {Xi : v} : x ∈ C, v ∈ Domaini}
Prune:

C ← K elements of C ′ with highest weights

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]

CS221 58

• The beam search algorithm maintains set of candidates C and iterates through all the variables, just as in greedy.

• It extends each candidate partial assignment x ∈ C with every possible Xi : v. This produces a new candidate list C ′.

• We compute the weight for each new candidate in C ′ and then keep the K elements with the largest weight.

• Like greedy, beam search also has no guarantees of finding the maximum weight assignment, but it generally works better than greedy.

• In the demo, let’s examine the object tracking CSP from before. Let us run beam search with K = 3. We start with the empty assignment,
and extend to the three candidates for X1. These are pruned down to K = 3 (so nothing happens). Then we extend each of the partial
assignments to all the possible values of X2, compute each of their weights, and then we prune down to the K = 3 candidates with the
largest weight. Then the same with X3. Finally, we see that the highest weight (full) assignment is {X1 : 1, X2 : 2, X3 : 2}, which has a
weight of 8. In this case, we got lucky and ended up with the globally optimal solution, but remember that beam search is in general not
guaranteed to find the maximum weight assignment.

Time complexity

n variables (depth)

Branching factor b = |Domaini|
Beam size K

Time: O(nKb)

CS221 60

• The advantage of beam search is that the time complexity is very predictable.

• Suppose we have a CSP with n variables; this is the depth of the search tree. Each variable Xi can take on |Domaini| values, and for
simplicity, assume all these values are b, which is the branching factor of the search tree. Finally, we have the beam size K, which is the
number of paths down the search tree we’re entertaining.

• For each of the n levels, we have to iterate over K candidates, extend each one by b. The time it takes to select the K largest elements from
a list of Kb elements is Kb by using a selection algorithm.

Summary

• Beam size K controls tradeoff between efficiency and accuracy

• K = 1 is greedy search (O(nb) time)

• K = ∞ is BFS (O(bn) time)

Backtracking search ' DFS ; Beam search ' Pruned BFS

CS221 62

• In summary, we have presented a simple heuristic for approximating maximum weight assignments, beam search.

• Beam search offers a nice way to tradeoff efficiency and accuracy and is used quite commonly in practice, especially on naturally sequential
problems like optimizing over sentences (sequences of words) or trajectories (sequences of positions).

• If you want speed and don’t need extremely high accuracy, use K = 1, which recovers the greedy algorithm. The running time is O(nb),
since for each of the n variables, we need to consider b possible values in the domain.

• With large enough K (no pruning), beam search is just doing a BFS traversal of the search tree (whereas backtracking search performs a
DFS traversal), which takes O(bn) time.

• To draw a connection between perhaps more familiar tree search algorithms, think of backtracking search as performing a DFS of the search
tree.

• Beam search is like a pruned version of BFS, where we are still exploring the tree layer by layer, but we use the factors that we’ve seen so far
to aggressively cut out the branches of the tree that are not worth exploring further.

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 64

• In this module, I will talk about local search, a strategy for approximately computing the maximum weight assignment in a CSP.

Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments

CS221 66

• So far, we’ve seen both backtracking and beam search. These search algorithms build up a partial assignment incrementally, and are structured
around an ordering of the variables (even if it’s dynamically chosen). With backtracking search, we can’t just go back and change the value
of a variable much higher in the tree due to new information; we have to wait until the backtracking takes us back up, in which case we lose
all the information about the more recent variables. With beam search, we can’t even go back at all.

• Local search (i.e., hill climbing) provides us with additional flexibility. Instead of building up partial assignments, we work with a complete
assignment and make repairs by changing one variable at a time.

Example: object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
X

i

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi − xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]

CS221 68

• Recall the object tracking example in which we observe noisy sensor readings 0, 2, 2.

• We have observation factors oi that encourage the position Xi and the corresponding sensor reading to be nearby.

• We also have transition factors ti that encourage the positions Xi and Xi+1 to be nearby.

One small step

X1 X2 X3

t1

o1

0

0
t2

o2

2

0

o3

2

1

Old assignment: (0, 0, 1); how to improve?

(x1, v, x3) weight

(0, 0, 1) 2 · 2 · 0 · 1 · 1 = 0

(0, 1, 1) 2 · 1 · 1 · 2 · 1 = 4

(0, 2, 1) 2 · 0 · 2 · 1 · 1 = 0

New assignment: (0, 1, 1)

CS221 70

• Suppose we have a complete assignment (0, 0, 1), perhaps randomly generated. This complete assignment has weight 0.

• Can we make a local change to the assignment to improve the weight? Let’s just try setting x2 to a new value v.

• For each possible value v, we compute the weight of the resulting assignment from setting x2 : v.

• We then just take the v that produces the maximum weight.

• This results in a new assignment (0, 1, 1) with a higher weight (4 rather than 0).

• This is one step of ICM, and one can now take another variable and try to change its value to improve the weight of the complete assignment.

Exploiting locality

X1 X2 X3

t1

o1

t2

o2 o3

Weight of new assignment (x1, v, x3):

o1(x1)t1(x1, v)o2(v)t2(v, x3)o3(x3)

Key idea: locality

When evaluating possible re-assignments to Xi, only need to consider the factors that
depend on Xi.

CS221 72

• There is one optimization we can make. If we write down the weight of a new assignment x ∪ {X2 : v}, we will notice that all the factors
return the same value as before except the ones that depend on X2.

• Therefore, we only need to compute the product of these relevant factors and take the maximum weight. Because we only need to look at
the factors that touch the variable we’re modifying, this can be a big saving if the total number of factors is much larger.

Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Compute weight of xv = x ∪ {Xi : v} for each v

x← xv with highest weight

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

[demo: iteratedConditionalModes()]

CS221 74

• Now we can state our first algorithm, ICM. The idea is simple: we start with a random complete assignment. We repeatedly loop through all
the variables Xi.

• On variable Xi, we consider all possible ways of re-assigning it Xi : v for v ∈ Domaini, and choose the new assignment that has the highest
weight.

• Graphically, we represent each step of the algorithm by having shaded nodes for the variables which are fixed and unshaded for the single
variable which is being re-assigned.

• Note that in the demo, ICM gets stuck in a local optimum with weight 4 rather than the global optimal weight of 8.

Convergence properties

• Weight(x) increases or stays the same each iteration

• Converges in a finite number of iterations

• Can get stuck in local optima

• Not guaranteed to find optimal assignment!

CS221 76

• Note that each step of ICM cannot decrease the weight because we can always stick with the old assignment.

• ICM terminates when we stop increasing the weight, which will happen eventually since there are a finite number of assignments and therefore
possible weights we can increase to.

• However, ICM can get stuck in local optima, where there is a assignment with larger weight elsewhere, but no one-variable change increases
the weight.

• Connection: this hill-climbing is called coordinate-wise ascent. We already saw an instance of coordinate-wise ascent in the K-means algorithm
which would alternate between fixing the centroids and optimizing the object with respect to the cluster assignments, and fixing the cluster
assignments and optimizing the centroids. Recall that K-means also suffered from local optima issues.

• There are two ways to mitigate local optima. One is to change multiple variables at once. Another is to inject randomness, which we’ll see
later with Gibbs sampling.

Summary

X1 X2 X3

t1

o1

t2

o2 o3

Algorithm Strategy Optimality Time complexity

Backtracking search extend partial assignments exact exponential

Beam search extend partial assignments approximate linear

Local search (ICM) modify complete assignments approximate linear∗

∗ time to do O(1) passes

CS221 78

• This concludes our presentation of a local search algorithm, Iterated Conditional Modes (ICM).

• Let us summarize all the search algorithms for finding maximum weight assignment CSPs that we have encountered.

• Backtracking search starts with an empty assignment and incrementally build up partial assignments. It produces exact (optimal) solutions
and requires exponential time (although heuristics such as dynamic ordering and AC-3 help).

• Beam search also extends partial assignments. It takes linear time in the number of variables, but yields approximate solutions.

• In this module, we’ve considered an alternative strategy, local search, which works directly with complete assignments and tries to improve
them one variable at a time. If we always choose the value that maximizes the weight, we get ICM, which has the same characteristics as
beam search: approximate but fast.

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

Low-level High-level

Machine learning

CS221 80

• A quick reminder of where we are in the course. We just completed our discussion of CSPs, the first of our variable-based models.

• Markov networks are the second type of variable-based model, which will connect factor graphs with probability and serve as a stepping stone
on the way to Bayesian networks. That will be the topic for discussion next week.

