
MDPs 2: Reinforcement Learning

Review: MDPs

in in,stay

in,quit end

stay

(2/3): $4

(1/3): $4quit

1: $10

Definition: Markov decision process

States: the set of states

sstart ∈ States: starting state

Actions(s): possible actions from state s

T (s, a, s′): probability of s′ if take action a in state s

Reward(s, a, s′): reward for the transition (s, a, s′)

IsEnd(s): whether at end of game

0 ≤ γ ≤ 1: discount factor (default: 1)
CS221 2

• Last time, we talked about MDPs, which we can think of as graphs, where each node is either a state s or a chance node (s, a). Actions
take us from states to chance nodes. This movement is something we can control. Transitions take us from chance nodes to states. This
movement is random, and the various likelihoods are governed by transition probabilities.

Review: MDPs

• Following a policy π produces a path (episode)

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

• Value function Vπ(s): expected utility if follow π from state s

Vπ(s) =

{
0 if IsEnd(s)

Qπ(s, π(s)) otherwise.

• Q-value function Qπ(s, a): expected utility if first take action a from state s and then
follow π

Qπ(s, a) =
∑
s′ T (s, a, s

′)[Reward(s, a, s′) + γVπ(s
′)]

CS221 4

• Given a policy π and an MDP, we can run the policy on the MDP yielding a sequence of states, action, rewards s0; a1, r1, s1; a2, r2, s2;
Formally, for each time step t, at = π(st−1), and st is sampled with probability T (st−1, at, st). We call such a sequence an episode (a path
in the MDP graph). This will be a central notion in this lecture.

• Each episode (path) is associated with a utility, which is the discounted sum of rewards: u1 = r1 + γr2 + γ2r3 + · · · . It’s important to
remember that the utility u1 is a random variable which depends on how the transitions were sampled.

• The value of the policy (from state s0) is Vπ(s0) = E[u1], the expected utility. In the last lecture, we worked with the values directly without
worrying about the underlying random variables (but that will soon no longer be the case). In particular, we defined recurrences relating the
value Vπ(s) and Q-value Qπ(s, a), which represents the expected utility from starting at the corresponding nodes in the MDP graph.

• Given these mathematical recurrences, we produced algorithms: policy evaluation computes the value of a policy, and value iteration computes
the optimal policy.

Unknown transitions and rewards

Definition: Markov decision process

States: the set of states

sstart ∈ States: starting state

Actions(s): possible actions from state s

IsEnd(s): whether at end of game

0 ≤ γ ≤ 1: discount factor (default: 1)

reinforcement learning!

CS234 course: https://web.stanford.edu/class/cs234/

CS221 6

• In this lecture, we assume that we have an MDP where we neither know the transitions nor the reward functions. We are still trying to
maximize expected utility, but we are in a much more difficult setting called reinforcement learning.

Mystery game

Example: mystery buttons

For each round r = 1, 2, . . .
• You choose A or B.

• You move to a new state and get some rewards.

Start A B

State: 5,0 Rewards: 0

CS221 8

• To put yourselves in the shoes of a reinforcement learner, try playing the game. You can either push the A button or the B button. Each of
the two actions will take you to a new state and give you some reward.

• This simple game illustrates some of the challenges of reinforcement learning: we should take good actions to get rewards, but in order to
know which actions are good, we need to explore and try different actions.

From MDPs to reinforcement learning

Markov decision process (offline)

• Have mental model of how the world
works.

• Find policy to collect maximum rewards.

Reinforcement learning (online)

• Don’t know how the world works.

• Perform actions in the world to find out
and collect rewards.

CS221 10

• An important distinction between solving MDPs (what we did before) and reinforcement learning (what we will do now) is that the former is
offline and the latter is online.

• In the former case, you have a mental model of how the world works. You go lock yourself in a room, think really hard, and come up with a
policy. Then you come out and use it to act in the real world.

• In the latter case, you don’t know how the world works, but you only have one life, so you just have to go out into the real world and learn
how it works from experiencing it and trying to take actions that yield high rewards.

• At some level, reinforcement learning is really the way humans work: we go through life, taking various actions, getting feedback. We get
rewarded for doing well and learn along the way.

Reinforcement learning framework

agent environment

action a

reward r, new state s′

Algorithm: reinforcement learning template

For t = 1, 2, 3, . . .

Choose action at = πact(st−1) (how?)

Receive reward rt and observe new state st

Update parameters (how?)

CS221 12

• To make the framework clearer, we can think of an agent (the reinforcement learning algorithm) that repeatedly chooses an action at to
perform in the environment, and receives some reward rt, and information about the new state st.

• There are two questions here: how to choose actions (what is πact) and how to update the parameters. We will first talk about updating
parameters (the learning part), and then come back to action selection later.

Volcano crossing

Run (or press ctrl-enter) -50 20

-50

2

Utility: 2

a r s

(2,1)

W 0 (2,1)

W 0 (2,1)

N 0 (1,1)

W 0 (1,1)

N 0 (1,1)

E 0 (1,2)

S 0 (2,2)

W 0 (2,1)

N 0 (2,2)

N 0 (3,2)

S 0 (3,2)

W 2 (3,1)
CS221 14

• Recall the volcano crossing example from the previous lecture. Each square is a state. From each state, you can take one of four actions to
move to an adjacent state: north (N), east (E), south (S), or west (W). If you try to move off the grid, you remain in the same state. The
starting state is (2,1), and the end states are the four marked with red or green rewards. Transitions from (s, a) lead where you expect with
probability 1-slipProb and to a random adjacent square with probability slipProb.

• If we solve the MDP using value iteration (by setting numIters to 10), we will find the best policy (which is to head for the 20). Of course,
we can’t solve the MDP if we don’t know the transitions or rewards.

• If you set numIters to zero, we start off with a random policy. Try pressing the Run button to generate fresh episodes. How can we learn
from this data and improve our policy?

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 16

• Next, we will discuss with model-based methods for learning Markov Decision processes (MDPs).

Model-Based Value Iteration

Data: s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Key idea: model-based learning

Estimate the MDP: T (s, a, s′) and Reward(s, a, s′)

Transitions:

T̂ (s, a, s′) = # times (s, a, s′) occurs
times (s, a) occurs

Rewards:

R̂eward(s, a, s′) = r in (s, a, r, s′)

CS221 18

Model-Based Value Iteration

in in,stay

in,quit end

stay

(4/7): $4

(3/7): $4quit

?: $?

Data (following policy π(s) = stay):

[in; stay, 4, end]

• Estimates converge to true values (under certain conditions)

• With estimated MDP (T̂ , R̂eward), compute policy using value iteration

CS221 20

• The first idea is called model-based value iteration, where we try to estimate the model (transitions and rewards) using Monte Carlo
simulation.

• Monte Carlo is a standard way to estimate the expectation of a random variable by taking an average over samples of that random variable.

• Here, the data used to estimate the model is the sequence of states, actions, and rewards in the episode. Note that the samples being
averaged are not independent (because they come from the same episode), but they do come from a Markov chain, so it can be shown that
these estimates converge to the expectations by the ergodic theorem (a generalization of the law of large numbers for Markov chains).

• But there is one important caveat...

Problem

in in,stay

in,quit end

stay

(4/7): $4

(3/7): $4quit

?: $?

Problem: won’t even see (s, a) if a 6= π(s) (a = quit)

Key idea: exploration

To do reinforcement learning, need to explore the state space.

Solution: need π to explore explicitly (more on this later)

CS221 22

• So far, our policies have been deterministic, mapping s always to π(s). However, if we use such a policy to generate our data, there are certain
(s, a) pairs that we will never see and therefore never be able to estimate their Q-value and never know what the effect of those actions are.

• This problem points at the most important characteristic of reinforcement learning, which is the need for exploration. This distinguishes
reinforcement learning from supervised learning, because now we actually have to act to get data, rather than just having data poured over
us.

• To close off this point, we remark that if π is a non-deterministic policy which allows us to explore each state and action infinitely often
(possibly over multiple episodes), then the estimates of the transitions and rewards will converge.

• Once we get an estimate for the transitions and rewards, we can simply plug them into our MDP and solve it using standard value or policy
iteration to produce a policy.

• Notation: we put hats on quantities that are estimated from data (Q̂∗, T̂) to distinguish from the true quantities (Q∗, T).

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 24

• Next, we will discuss model-free methods for learning Markov Decision processes (MDPs).

From model-based to model-free

Q̂opt(s, a) =
∑
s′

T̂ (s, a, s′)[R̂eward(s, a, s′) + γV̂opt(s
′)]

All that matters for prediction is (estimate of) Qopt(s, a).

Key idea: model-free learning

Try to estimate Qopt(s, a) directly.

CS221 26

• Taking a step back, if our goal is to just find good policies, all we need is to get a good estimate of Q̂opt. From that perspective, estimating

the model (transitions and rewards) was just a means towards an end. Why not just cut to the chase and estimate Q̂opt directly? This is
called model-free learning, where we don’t explicitly estimate the transitions and rewards.

Model-free Monte Carlo

Data (following policy π):

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Recall:

Qπ(s, a) is expected utility starting at s, first taking action a, and then following policy π

Utility:

ut = rt + γ · rt+1 + γ2 · rt+2 + · · ·

Estimate:

Q̂π(s, a) = average of ut where st−1 = s, at = a

(and s, a doesn’t occur in s0, · · · , st−2)

CS221 28

Model-free Monte Carlo

in in,stay

in,quit end

stay

(?): $?

(?): $?quit

?: $?

(4 + 8 + 16)/3

?

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Qπ now, not Qopt

Definition: on-policy versus off-policy

On-policy: estimate the value of data-generating policy

Off-policy: estimate the value of another policy
CS221 30

• Recall that Qπ(s, a) is the expected utility starting at s, taking action a, and the following π.

• In terms of the data, define ut to be the discounted sum of rewards starting with rt.

• Observe that Qπ(st−1, at) = E[ut]; that is, if we’re at state st−1 and take action at, the average value of ut is Qπ(st−1, at).

• But that particular state and action pair (s, a) will probably show up many times. If we take the average of ut over all the times that st−1 = s
and at = a, then we obtain our Monte Carlo estimate Q̂π(s, a). Note that nowhere do we need to talk about transitions or immediate rewards;
the only thing that matters is total rewards resulting from (s, a) pairs.

• One technical note is that for simplicity, we only consider st−1 = s, at = a for which the (s, a) doesn’t show up earlier. This is not necessary
for the algorithm to work, but it is easier to analyze and think about.

• Model-free Monte Carlo depends strongly on the policy π that is followed; after all it’s computing Qπ. Because the value being computed is
dependent on the policy used to generate the data, we call this an on-policy algorithm. In contrast, model-based Monte Carlo is off-policy,
because the model we estimated did not depend on the exact policy (as long as it was able to explore all (s, a) pairs).

Model-free Monte Carlo (equivalences)

Data (following policy π):

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Original formulation

Q̂π(s, a) = average of ut where st−1 = s, at = a

Equivalent formulation (convex combination)

On each (s, a, u):

η = 1
1+(# updates to (s, a))

Q̂π(s, a)← (1− η)Q̂π(s, a) + ηu

CS221 32

• Over the next few slides, we will interpret model-free Monte Carlo in several ways. This is the same algorithm, just viewed from different
perspectives. This will give us some more intuition and allow us to develop other algorithms later.

• The first interpretation is thinking in terms of interpolation. Instead of thinking of averaging as a batch operation that takes a list of numbers
(realizations of ut) and computes the mean, we can view it as an iterative procedure for building the mean as new numbers are coming in.

• In particular, it’s easy to work out for a small example that averaging is equivalent to just interpolating between the old value Q̂π(s, a)
(current estimate) and the new value u (data). The interpolation ratio η is set carefully so that u contributes exactly the right amount to
the average.

• Advanced: in practice, we would constantly improve the policy π constantly over time. In this case, we might want to set η to something
that doesn’t decay as quickly (for example, η = 1/

√
updates to (s, a)). This rate implies that a new example contributes more than an

old example, which is desirable so that Q̂π(s, a) reflects the more recent policy rather than the old policy.

Model-free Monte Carlo (equivalences)

Equivalent formulation (convex combination)

On each (s, a, u):

Q̂π(s, a)← (1− η)Q̂π(s, a) + ηu

Equivalent formulation (stochastic gradient)

On each (s, a, u):

Q̂π(s, a)← Q̂π(s, a)− η[Q̂π(s, a)︸ ︷︷ ︸
prediction

− u︸︷︷︸
target

]

Implied objective: least squares regression

(Q̂π(s, a)− u)2

CS221 34

• The second equivalent formulation is making the update look like a stochastic gradient update. Indeed, if we think about each (s, a, u) triple
as an example (where (s, a) is the input and u is the output), then the model-free Monte Carlo is just performing stochastic gradient descent
on a least squares regression problem, where the weight vector is Q̂π (which has dimensionality SA) and there is one feature template ”(s, a)
equals ”.

• The stochastic gradient descent view will become particularly relevant when we use non-trivial features on (s, a).

Volcanic model-free Monte Carlo

Run (or press ctrl-enter)

0

1

01

0

0

00 -50 20

1

1

10

0

0

01 -50
0

0

00

2
0

0

00

0

0

00

0

0

00

Utility: 2

a r s

(2,1)

N 0 (1,1)

W 0 (1,1)

S 0 (2,1)

E 0 (2,2)

W 0 (2,1)

S 2 (3,1)

CS221 36

• Let’s run model-free Monte Carlo on the volcano crossing example. slipProb is zero to make things simpler. We are showing the Q-values:
for each state, we have four values, one for each action.

• Here, our exploration policy is one that chooses an action uniformly at random.

• Try pressing ”Run” multiple times to understand how the Q-values are set.

• Then try increasing numEpisodes, and seeing how the Q-values of this policy become more accurate.

• You will notice that a random policy has a very hard time reaching the 20.

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 38

• Next, we will discuss SARSA learning Markov Decision processes (MDPs).

Using the utility

Data (following policy π(s) = stay):

[in; stay, 4, end] u = 4

[in; stay, 4, in; stay, 4, end] u = 8

[in; stay, 4, in; stay, 4, in; stay, 4, end] u = 12

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] u = 16

Algorithm: model-free Monte Carlo

On each (s, a, u):

Q̂π(s, a)← (1− η)Q̂π(s, a) + η u︸︷︷︸
data

CS221 40

Using the reward + Q-value

Current estimate: Q̂π(s, stay) = 11

Data (following policy π(s) = stay):

[in; stay, 4, end] 4 + 0

[in; stay, 4, in; stay, 4, end] 4 + 11

[in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11

Algorithm: SARSA

On each (s, a, r, s′, a′):

Q̂π(s, a)← (1− η)Q̂π(s, a) + η[r︸︷︷︸
data

+γ Q̂π(s
′, a′)︸ ︷︷ ︸

estimate

]

CS221 42

• Broadly speaking, reinforcement learning algorithms interpolate between new data (which specifies the target value) and the old estimate of
the value (the prediction).

• Model-free Monte Carlo’s target was u, the discounted sum of rewards after taking an action. However, u itself is just an estimate of Qπ(s, a).
If the episode is long, u will be a pretty lousy estimate. This is because u only corresponds to one episode out of a mind-blowing exponential
(in the episode length) number of possible episodes, so as the epsiode lengthens, it becomes an increasingly less representative sample of
what could happen. Can we produce a better estimate of Qπ(s, a)?

• An alternative to model-free Monte Carlo is SARSA, whose target is r + γQ̂π(s
′, a′). Importantly, SARSA’s target is a combination of the

data (the first step) and the estimate (for the rest of the steps). In contrast, model-free Monte Carlo’s u is taken purely from the data.

Model-free Monte Carlo versus SARSA

Key idea: bootstrapping

SARSA uses estimate Q̂π(s, a) instead of just raw data u.

u r + Q̂π(s
′, a′)

based on one path based on estimate

unbiased biased

large variance small variance

wait until end to update can update immediately

CS221 44

• The main advantage that SARSA offers over model-free Monte Carlo is that we don’t have to wait until the end of the episode to update the
Q-value.

• If the estimates are already pretty good, then SARSA will be more reliable since u is based on only one path whereas Q̂π(s
′, a′) is based on

all the ones that the learner has seen before.
• Advanced: We can actually interpolate between model-free Monte Carlo (all rewards) and SARSA (one reward). For example, we could

update towards rt+ γrt+1+ γ
2Q̂π(st+1, at+2) (two rewards). We can even combine all of these updates, which results in an algorithm called

SARSA(λ), where λ determines the relative weighting of these targets. See the Sutton/Barto reinforcement learning book (chapter 7) for an
excellent introduction.

• Advanced: There is also a version of these algorithms that estimates the value function Vπ instead of Qπ. Value functions aren’t enough to
choose actions unless you actually know the transitions and rewards. Nonetheless, these are useful in game playing where we actually know
the transition and rewards, but the state space is just too large to compute the value function exactly.

Question

Which of the following algorithms allows you to estimate Q∗(s, a) (select all that apply)?

(a) model-based value iteration

(b) model-free Monte Carlo

(c) SARSA

think and share

CS221 46

• Model-based value iteration estimates the transitions and rewards, which fully specifies the MDP. With the MDP, you can estimate anything
you want, including computing Q∗(s, a)

• Model-free Monte Carlo and SARSA are on-policy algorithms, so they only give you Q̂π(s, a), which is specific to a policy π. These will not
provide direct estimates of Q∗(s, a).

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 48

• Next, we will discuss Q-learning Markov Decision processes (MDPs).

Q-learning

Problem: model-free Monte Carlo and SARSA only estimate Qπ, but want Qopt to act optimally

Output MDP reinforcement learning

Qπ policy evaluation model-free Monte Carlo, SARSA

Qopt value iteration Q-learning

CS221 50

• Recall our goal is to get an optimal policy, which means estimating Qopt.

• The situation is as follows: Our two methods (model-free Monte Carlo and SARSA) are model-free, but only produce estimates Qπ. We have
one algorithm, model-based value iteration, which can be used to produce estimates of Qopt, but is model-based. Can we get an estimate of
Qopt in a model-free manner?

• The answer is yes, and Q-learning is an algorithm that accomplishes this.

• One can draw an analogy between reinforcement learning algorithms and the classic MDP algorithms. MDP algorithms are offline, RL
algorithms are online. In both cases, algorithms either output the Q-values for a fixed policy or the optimal Q-values.

Q-learning

Bellman optimality equation:

Qopt(s, a) =
∑
s′

T (s, a, s′)[Reward(s, a, s′) + γVopt(s
′)]

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s′):

Q̂opt(s, a)← (1− η)Q̂opt(s, a)︸ ︷︷ ︸
prediction

+ η(r + γV̂opt(s
′))︸ ︷︷ ︸

target

Recall: V̂opt(s
′) = max

a′∈Actions(s′)
Q̂opt(s

′, a′)

CS221 52

• To derive Q-learning, it is instructive to look back at the Bellman optimality equation for Qopt. There are several changes that take us from
this recurrence to Q-learning. First, we don’t have an expectation over s′, but only have one sample s′.

• Second, because of this, we don’t want to just replace Q̂opt(s, a) with the target value, but want to interpolate between the old value
(prediction) and the new value (target).

• Third, we replace the actual reward Reward(s, a, s′) with the observed reward r (when the reward function is deterministic, the two are the
same).

• Finally, we replace Vopt(s
′) with our current estimate V̂opt(s

′).

• Importantly, the estimated optimal value V̂opt(s
′) involves a maximum over actions rather than taking the action of the policy. This max over

a′ rather than taking the a′ based on the current policy is the principle difference between Q-learning and SARSA.

SARSA versus Q-learning

Algorithm: SARSA

On each (s, a, r, s′, a′):

Q̂π(s, a)← (1− η)Q̂π(s, a) + η(r + γQ̂π(s
′, a′))

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s′):

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r + γ max
a′∈Actions(s′)

Q̂opt(s
′, a′))]

CS221 54

Volcanic SARSA and Q-learning

Run (or press ctrl-enter)

0

0

00

0

0

00 -50 20

0

1

00

0

0

00 -50
0

0

00

2
0

0

00

0

0

00

0

0

00

Utility: 2

a r s

(2,1)

S 2 (3,1)

CS221 56

• Let us try SARSA and Q-learning on the volcanic example.

• If you increase numEpisodes to 1000, SARSA will behave very much like model-free Monte Carlo, computing the value of the random policy.

• However, note that Q-learning is computing an estimate of Qopt(s, a), so the resulting Q-values will be very different. The average utility will
not change since we are still following and being evaluated on the same random policy. This is an important point for off-policy methods:
the online performance (average utility) is generally a lot worse and not representative of what the model has learned, which is captured in
the estimated Q-values.

Off-Policy versus On-Policy

Definition: on-policy versus off-policy

On-policy: evaluate or improve the data-generating policy

Off-policy: evaluate or learn using data from another policy

on-policy off-policy

policy evaluation
Monte Carlo

SARSA

policy optimization Q-learning

CS221 58

• What do we mean by off-policy?

• Model-free Monte Carlo depends strongly on the policy π that is followed; after all it’s computing Qπ. Because the value being computed is
dependent on the policy used to generate the data, we call this an on-policy algorithm. In contrast, model-based value iteration is off-policy,
because the model we estimated did not depend on the exact policy (as long as it was able to explore all (s, a) pairs).

• Further, model-free Q-learning is also off-policy, since it can learn the optimal policy using data from other policies.

Reinforcement Learning Algorithms

Algorithm Estimating Based on

Model-Based Monte Carlo T̂ , R̂ s0, a1, r1, s1, ...

Model-Free Monte Carlo Q̂π u

SARSA Q̂π r + Q̂π

Q-Learning Q̂opt r + Q̂opt

CS221 60

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 62

• Next, we will discuss epsilon-greedy exploration for learning Markov Decision processes (MDPs).

Exploration

Algorithm: reinforcement learning template

For t = 1, 2, 3, . . .

Choose action at = πact(st−1) (how?)

Receive reward rt and observe new state st

Update parameters (how?)

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Which exploration policy πact to use?

CS221 64

• We have so far given many algorithms for updating parameters (i.e., Q̂π(s, a) or Q̂opt(s, a)). If we were doing supervised learning, we’d be
done, but in reinforcement learning, we need to actually determine our exploration policy πact to collect data for learning. Recall that we
need to somehow make sure we get information about each (s, a).

• We will discuss two complementary ways to get this information: (i) explicitly explore (s, a) or (ii) explore (s, a) implicitly by actually exploring
(s′, a′) with similar features and generalizing.

• These two ideas apply to many RL algorithms, but let us specialize to Q-learning.

No exploration, all exploitation

Attempt 1: Set πact(s) = arg max
a∈Actions(s)

Q̂opt(s, a)

Run (or press ctrl-enter)

0

0

00

0

0.3

00 -50 100

0

0

20

0.1

2

-250 -50
0

0

00

2
0

0.5

02

0

0

00

0

0

00

Average (lifetime) utility: 1.95

a r s

(2,1)

E 0 (2,2)

S 0 (3,2)

W 2 (3,1)

Problem: Q̂opt(s, a) estimates are inaccurate, too greedy!

CS221 66

• The naive solution is to explore using the optimal policy according to the estimated Q-value Q̂opt(s, a).

• But this fails horribly. In the example, once the agent discovers that there is a reward of 2 to be gotten by going south that becomes its
optimal policy and it will not try any other action. The problem is that the agent is being too greedy.

• In the demo, if multiple actions have the same maximum Q-value, we choose randomly. Try clicking ”Run” a few times, and you’ll end up
with minor variations.

• Even if you increase numEpisodes to 10000, nothing new gets learned.

No exploitation, all exploration

Attempt 2: Set πact(s) = random from Actions(s)

Run (or press ctrl-enter)

98.4

98.4

98.498.4

98.4

98.4

-5098.4 -50 100

98.4

2

98.498.4

98.4

98.4

-5098.4 -50
99.2

77.5

96.2-49.6

2
98.4

98.4

98.42

-50

97.8

98.498.1

98.7

97.9

98.198

Average (lifetime) utility: -19.15

a r s

(2,1)

S 2 (3,1)

Problem: average utility is low because exploration is not guided

CS221 68

• We can go to the other extreme and use an exploration policy that always chooses a random action. It will do a much better job of exploration,
but it doesn’t exploit what it learns and ends up with a very low utility.

• It is interesting to note that the value (average over utilities across all the episodes) can be quite small and yet the Q-values can be quite
accurate. Recall that this is possible because Q-learning is an off-policy algorithm.

Exploration/exploitation tradeoff

Key idea: balance

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research

CS221 70

Epsilon-greedy

Algorithm: epsilon-greedy policy

πact(s) =

{
argmaxa∈Actions Q̂opt(s, a) probability 1− ε,

random from Actions(s) probability ε.

Run (or press ctrl-enter)

99.8

100

100100

99.6

100

-50100 -50 100

100

2

100100

100

100

-50100 -50
100

100

100-50

2
100

100

1002

-50

100

100100

100

100

100100

Average (lifetime) utility: 30.71

a r s

(2,1)

W 0 (2,1)

N 0 (1,1)

S 0 (2,1)

W 0 (2,1)

W 0 (2,1)

E 0 (2,2)

S 0 (3,2)

E 0 (3,3)

E 0 (3,4)

N 0 (2,4)

N 100 (1,4)

CS221 72

• The natural thing to do when you have two extremes is to interpolate between the two. The result is the epsilon-greedy algorithm which
explores with probability ε and exploits with probability 1− ε.

• It is natural to let ε decrease over time. When you’re young, you want to explore a lot (ε = 1). After a certain point, when you feel like
you’ve seen all there is to see, then you start exploiting (ε = 0).

• For example, we let ε = 1 for the first third of the episodes, ε = 0.5 for the second third, and ε = 0 for the final third. This is not the optimal
schedule. Try playing around with other schedules to see if you can do better.

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 74

• Next, we will discuss function approximation methods for learning Markov Decision processes (MDPs).

Generalization

Problem: large state spaces, hard to explore

1.2

2

1.50

0

1.9

11

0

1.5

00

0

0.5

00

0

0

-250 -50 20

1.9

1.9

21.6

1.8

2

1.82

0

1

0.82

0.3

1

01

0

0

00 -50
0

0

00

2

2

22

2

1.9

1.82

1.9

0.9

0.51.9

0.3

0

01.5

0

0

-250 -50
0

0

00

2

2

22

1.6

1.1

1.52

1.7

1

01.5

0

0

00

0

0

-250 -50
0

0

00

2
0

1.4

0.71.9

0

0

01.6

0

0

00

0

0

00

0

0

00

0

0

00

Average (lifetime) utility: 0.44

a r s

(3,1)

S 0 (4,1)

S 2 (5,1)

CS221 76

• Now we turn to another problem with vanilla Q-learning.

• In real applications, there can be millions of states, in which there’s no hope for epsilon-greedy to explore everything in a reasonable amount
of time.

Q-learning

Stochastic gradient update:

Q̂opt(s, a)← Q̂opt(s, a)− η[Q̂opt(s, a)︸ ︷︷ ︸
prediction

− (r + γV̂opt(s
′))︸ ︷︷ ︸

target

]

This is rote learning: every Q̂opt(s, a) has a different value

Problem: doesn’t generalize to unseen states/actions

CS221 78

• If we revisit the Q-learning algorithm, and think about it through the lens of machine learning, you’ll find that we’ve just been memorizing
Q-values for each (s, a), treating each pair independently.

• In other words, we haven’t been generalizing, which is actually one of the most important aspects of learning!

Function approximation

Key idea: linear regression model

Define features φ(s, a) and weights w:

Q̂opt(s, a;w) = w · φ(s, a)

Example: features for volcano crossing

φ1(s, a) = 1[a = W]

φ2(s, a) = 1[a = E]

...

φ7(s, a) = 1[s = (5, ∗)]
φ8(s, a) = 1[s = (∗, 6)]
...

CS221 80

• Function approximation fixes this by parameterizing Q̂opt by a weight vector and a feature vector, as we did in linear regression.

• Recall that features are supposed to be properties of the state-action (s, a) pair that are indicative of the quality of taking action a in state s.

• The ramification is that all the states that have similar features will have similar Q-values. For example, suppose φ included the feature
1[s = (∗, 4)]. If we were in state (1, 4), took action E, and managed to get high rewards, then Q-learning with function approximation will
propagate this positive signal to all positions in column 4 taking any action.

• In our example, we defined features on actions (to capture that moving east is generally good) and features on states (to capture the fact
that the 6th column is best avoided, and the 5th row is generally a good place to travel to).

Function approximation

Algorithm: Q-learning with function approximation

On each (s, a, r, s′):

w← w − η[Q̂opt(s, a;w)︸ ︷︷ ︸
prediction

− (r + γV̂opt(s
′))︸ ︷︷ ︸

target

]φ(s, a)

Implied objective function:

(Q̂opt(s, a;w)︸ ︷︷ ︸
prediction

− (r + γV̂opt(s
′))︸ ︷︷ ︸

target

)2

CS221 82

• We now turn our linear regression into an algorithm. Here, it is useful to adopt the stochastic gradient view of RL algorithms, which we
developed a while back.

• We just have to write down the least squares objective and then compute the gradient with respect to w now instead of Q̂opt. The chain rule
takes care of the rest.

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions
CS221 84

• Finally, let’s recap our discussion on methods for learning Markov Decision processes (MDPs).

Summary of MDPs

• Markov decision processes (MDPs) cope with uncertainty

• Solutions are policies rather than paths

• Policy evaluation computes policy value (expected utility)

• Value iteration computes optimal value (maximum expected utility) and optimal policy

• Main technique: write recurrences → algorithm

CS221 86

Summary of Reinforcement Learning

• Online setting: learn and take actions in the real world!

• Monte Carlo: estimate transitions, rewards, Q-values from data

• Bootstrapping: update towards target that depends on estimate rather than just raw data

CS221 88

• This concludes the technical part of reinforcement learning.

• The first part is to understand the setup: we are taking good actions in the world both to get rewards under our current model, but also to
collect information about the world so we can learn a better model. This exposes the fundamental exploration/exploitation tradeoff, which is
the hallmark of reinforcement learning.

• We looked at several algorithms: model-based value iteration, model-free Monte Carlo, SARSA, and Q-learning. There were two comple-
mentary ideas here: using Monte Carlo approximation (approximating an expectation with a sample) and bootstrapping (using the model
predictions to update itself).

Covering the unknown

Epsilon-greedy: balance the exploration/exploitation tradeoff

Function approximation: can generalize to unseen states

CS221 90

Challenges in reinforcement learning

Binary classification (sentiment classification, SVMs):

• Stateless, full supervision

Reinforcement learning (flying helicopters, Q-learning):

• Stateful, partial supervision

Key idea: partial supervision

Reward feedback, but not given the solution directly.

Key idea: state

Rewards depend on previous actions ⇒ can have delayed rewards.

CS221 92

States and information

stateless state

full supervision
supervised learning

(binary classification)

supervised

imitation learning

(structured prediction)

partial supervision multi-armed bandits reinforcement learning

CS221 94

• If we compare simple supervised learning (e.g., binary classification) and reinforcement learning, we see that there are two main differences
that make learning harder.

• First, reinforcement learning requires the modeling of state. State means that the rewards across time steps are related. This results in
delayed rewards, where we take an action and don’t see the ramifications of it until much later.

• Second, reinforcement learning requires dealing with partial supervision (rewards). This means that we have to actively explore to acquire the
necessary supervision.

• There are two problems that move towards reinforcement learning, each on a different axis. Structured prediction introduces the notion of
state, but the problem is made easier by the fact that we have full supervision, which means that for every situation, we know which action
sequence is the correct one; there is no need for exploration; we just have to update our weights to favor that correct path.

• Multi-armed bandits require dealing with partial supervision, but do not have the complexities of state. One can think of a multi-armed bandit
problem as an MDP with unknown random rewards and one state. Exploration is necessary, but there is no temporal depth to the problem.

Deep reinforcement learning

just use a neural network for Q̂opt(s, a), πopt, T , etc

Playing Atari [Google DeepMind, 2013]:

• last 4 frames (images) ⇒ 3-layer NN ⇒ keystroke

• ε-greedy, train over 10M frames with 1M replay memory

• Human-level performance on some games (breakout), less good on others (space invaders)

CS221 96

• Recently, there has been a surge of interest in reinforcement learning due to the success of neural networks. If one is performing reinforcement
learning in a simulator, one can actually generate tons of data, which is suitable for rich functions such as neural networks.

• A recent success story is DeepMind, who successfully trained a neural network to represent the Q̂opt function for playing Atari games. The
impressive part was the lack of prior knowledge involved: the neural network simply took as input the raw image and outputted keystrokes.

Deep reinforcement learning

• Policy gradient: train a policy π(a | s) (say, a neural network) to directly maximize
expected reward

• Google DeepMind’s AlphaGo (2016), AlphaZero (2017)

• Stanford CS224R course:

https://cs224r.stanford.edu/

CS221 98

• One other major class of algorithms we will not cover in this class is policy gradient. Whereas Q-learning attempts to estimate the value of
the optimal policy, policy gradient methods optimize the policy to maximize expected reward, which is what we care about. Recall that when
we went from model-based methods (which estimated the transition and reward functions) to model-free methods (which estimated the Q
function), we moved closer to the thing that we want. Policy gradient methods take this farther and just focus on the only object that really
matters at the end of the day, which is the policy that an agent follows.

• Policy gradient methods have been quite successful. For example, it was one of the components of AlphaGo, Google DeepMind’s program
that beat the world champion at Go. One can also combine value-based methods with policy-based methods in actor-critic methods to get
the best of both worlds.

• There is a lot more to say about deep reinforcement learning. If you wish to learn more, see the Stanford CS224R course website.

Applications

Robotics Applications: learning dexterous manipulation, control helicopter to do ma-
neuvers in the air

Backgammon: TD-Gammon plays 1-2 million games against itself, human-level per-
formance

Games: DQN solving Atari Games, openAI Five playing Dota.

Managing datacenters; actions: bring up and shut down machine to minimize
time/cost

Routing Autonomous Cars: bring down the total latency of vehicles on the road

CS221 100

• There are many other applications of RL, which range from robotics to game playing to other infrastructural tasks. One could say that RL is
so general that anything can be cast as an RL problem.

• For a while, RL only worked for small toy problems or settings where there were a lot of prior knowledge / constraints. Deep RL — the use
of powerful neural networks with increased compute — has vastly expanded the realm of problems which are solvable by RL.

Markov decision processes: against nature (e.g., Blackjack)

Next time...

Adversarial games: against opponent (e.g., chess)

CS221 102

