
Search: overview

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

Low-level High-level

Machine learning

CS221 2

Application: route finding

Objective: shortest? fastest? most scenic?

Actions: go straight, turn left, turn right

CS221 4

• Route finding is a canonical example of a search problem. We are given as the input a map, a source point and a destination point. The goal
is to output a sequence of actions (e.g., go straight, turn left, or turn right) that will take us from the source to the destination.

• We might evaluate action sequences based on an objective (distance, time, or pleasantness).

Application: robot motion planning

Objective: fastest path

Actions: acceleration and throttle

CS221 6

• In robot motion planning, the goal is get a robot to move from one position/pose to another. Some of the most popular search algorithms
like A star are developed for some of the first intelligent robots (Shakey 1983)

Application: robot motion planning

Objective: fastest? most energy efficient? safest? most expressive?

Actions: translate and rotate joints

CS221 8

• In robot motion planning, the goal is get a robot to move from one position/pose to another. The desired output trajectory consists of
individual actions, each action corresponding to moving or rotating the joints by a small amount.

• Again, we might evaluate action sequences based on various resources like time, energy, safety, or expressiveness.

Application: multi-robot systems

Objective: fastest? most energy efficient?

Actions: acceleration and steering of all robots

CS221 10

• Instead of planning for one agent, we can plan for a fleet of agents. For example, a group of robots need to coordinate in a warehouse to
move objects from one shelf to another.

Application: solving puzzles

Objective: reach a certain configuration

Actions: move pieces (e.g., Move12Down)

CS221 12

• In solving various puzzles, the output solution can be represented by a sequence of individual actions. In the Rubik’s cube, an action is rotating
one slice of the cube. In the 15-puzzle, an action is moving one square to an adjacent free square.

• In puzzles, even finding one solution might be an accomplishment. The more ambitious might want to find the best solution (say, minimize
the number of moves).

Application: machine translation

la maison bleue

the blue house

Objective: use fluent English and preserve meaning

Actions: append single words (e.g., the)

CS221 14

• In machine translation, the goal is to output a sentence that’s the translation of the given input sentence. The output sentence can be built
out of actions, each action appending a word or a phrase to the current output.

Beyond reflex

Classifier (reflex-based models):

x f single action y ∈ {−1,+1}

Search problem (state-based models):

x f action sequence (a1, a2, a3, a4, . . .)

Key: need to consider future consequences of an action!

CS221 16

• Last week, we finished our tour of machine learning of reflex-based models (e.g., linear predictors and neural networks) that output either
a +1 or −1 (for binary classification) or a real number (for regression).

• While reflex-based models were appropriate for some applications such as sentiment classification or spam filtering, the applications we will
look at today, such as solving puzzles, demand more.

• To tackle these new problems, we will introduce search problems, our first instance of a state-based model.

• In a search problem, in a sense, we are still building a predictor f which takes an input x, but f will now return an entire action sequence,
not just a single action. Of course you should object: can’t I just apply a reflex model iteratively to generate a sequence? While that is
true, the search problems that we’re trying to solve importantly require reasoning about the consequences of the entire action sequence, and
cannot be tackled by myopically predicting one action at a time.

• Tangent: Of course, saying ”cannot” is a bit strong, since sometimes a search problem can be solved by a reflex-based model. You could
have a massive lookup table that told you what the best action was for any given situation. It is interesting to think of this as a time/memory
tradeoff where reflex-based models are performing an implicit kind of caching. Going on a further tangent, one can even imagine compiling
a state-based model into a reflex-based model; if you’re walking around Stanford for the first time, you might have to really plan things out,
but eventually it kind of becomes reflex.

• We have looked at many real-world examples of this paradigm. For each example, the key is to decompose the output solution into a sequence
of primitive actions. In addition, we need to think about how to evaluate different possible outputs (the objective).

Paradigm

Modeling

Inference Learning

CS221 18

• Recall the modeling-inference-learning paradigm. For reflex-based classifiers, modeling consisted of choosing the features and the neural
network architecture; inference was trivial forward computation of the output given the input; and learning involved using stochastic gradient
descent on the gradient of the loss function, which might involve backpropagation.

• Today, we will focus on the modeling and inference part of search problems. The next lecture will cover learning.

Roadmap

Modeling

Modeling Search Problems

Algorithms

Tree Search

Dynamic Programming

Uniform Cost Search

Programming and Correctness of UCS

A*

A* Relaxations

Learning

Structured Perceptron

CS221 20

• Here are the rest of the modules under the search unit.

• We will start by talking about how we can define search problems, We will define states, successor, and cost functions.

• Next, we will introduce different types of search problems, starting with backtracking search and following with some of the other search
algorithms such as DFS, BFS, and DFS-ID.

• Then we will continue discussing dynamic programming and uniform cost search. We will prove that uniform cost search is correct. Then we
introduce the A* algorithm which tries to speed up UCS. Through this we introduce the concept of heuristics and their properties such as
consistency, efficiency, and admissibility. Finally, we go over the idea of relaxations and how that allows us to come up with heuristics.

• We also have an optional module focusing on learning cost functions and covering the structured perceptron algorithm.

Search: modeling

Question

A farmer wants to get his cabbage, goat, and wolf across a river. He has a boat that only
holds two. He cannot leave the cabbage and goat alone or the goat and wolf alone. How many
river crossings does he need?

- 4

- 5

- 6

- 7

- no solution

• When you solve this problem, try to think about how you did it. You probably simulated the scenario in your head, trying to send the farmer
over with the goat and observing the consequences. If nothing got eaten, you might continue with the next action. Otherwise, you undo that
move and try something else.

• But the point is not for you to be able to solve this one problem manually. The real question is: How can we get a machine to do solve all
problems like this automatically? One of the things we need is a systematic approach that considers all the possibilities. We will see that
search problems define the possibilities, and search algorithms explore these possibilities.

CS221 26

• This example, taken from xkcd, points out the cautionary tale that sometimes you can do better if you change the model (perhaps the value
of having a wolf is zero) instead of focusing on the algorithm.

Farmer Cabbage Goat Wolf

Actions:

F.

FC.

FG.

FW.

F/

FC/

FG/

FW/

Approach: build a search tree (”what if?”)

CS221 28

• We first start with our boat crossing puzzle. While you can possibly solve it in more clever ways, let us approach it in a very mechanical,
simple way, which allows us to introduce the notation for search problems.

• For this problem, we have eight possible actions, which will be denoted by a concise set of symbols. For example, the action FG. means that
the farmer will take the goat across to the right bank; F/ means that the farmer is coming back to the left bank alone.

FCGW‖

GW‖FC CW‖FG

FCW‖G

W‖FCG

FW‖CG FGW‖C

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FW.:1

F/:1 FG/:1

C‖FGW

FC‖GW FCG‖W

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FC.:1

F/:1 FG/:1

FC.:1 FW.:1

F/:1

CG‖FW

FC.:1 FG.:1 FW.:1

CS221 30

Search problem

FCGW‖

GW‖FC CW‖FG

FCW‖G

W‖FCG

FW‖CG FGW‖C

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FW.:1

F/:1 FG/:1

C‖FGW

FC‖GW FCG‖W

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FC.:1

F/:1 FG/:1

FC.:1 FW.:1

F/:1

CG‖FW

FC.:1 FG.:1 FW.:1

Definition: search problem

• sstart: starting state

• Actions(s): possible actions

• Cost(s, a): action cost

• Succ(s, a): successor

• IsEnd(s): reached end state?

CS221 32

• We will build what we will call a search tree. The root of the tree is the start state sstart, and the leaves are the end states (IsEnd(s) is true).
Each edge leaving a node s corresponds to a possible action a ∈ Actions(s) that could be performed in state s. The edge is labeled with the
action and its cost, written a : Cost(s, a). The action leads deterministically to the successor state Succ(s, a), represented by the child node.

• In summary, each root-to-leaf path represents a possible action sequence, and the sum of the costs of the edges is the cost of that path. The
goal is to find the root-to-leaf path that ends in a valid end state with minimum cost.

• Note that in code, we usually do not build the search tree as a concrete data structure. The search tree is used merely to visualize the
computation of the search algorithms and study the structure of the search problem.

• For the boat crossing example, we have assumed each action (a safe river crossing) costs 1 unit of time. We disallow actions that return us
to an earlier configuration. The green nodes are the end states. The red nodes are not end states but have no successors (they result in the
demise of some animal or vegetable). From this search tree, we see that there are exactly two solutions, each of which has a total cost of 7
steps.

Transportation example

Example: transportation

Street with blocks numbered 1 to n.

Walking from s to s+ 1 takes 1 minute.

Taking a magic tram from s to 2s takes 2 minutes.

How to travel from 1 to n in the least time?

[live solution: TransportationProblem]

CS221 34

• Let’s consider another problem and practice modeling it as a search problem. Recall that this means specifying precisely what the states,
actions, goals, costs, and successors are.

• To avoid the ambiguity of natural language, we will do this directly in code, where we define a TransportationProblem class and implement
the methods: startState, isEnd and succAndCost.

Search: tree search

Backtracking search

[whiteboard: search tree]

If b actions per state, maximum depth is D actions:

• Memory: O(D) (small)

• Time: O(bD) (huge) [250 = 1125899906842624]

CS221 38

• Now let’s put modeling aside and suppose we are handed a search problem. How do we construct an algorithm for finding a minimum cost
path (not necessarily unique)?

• We will start with backtracking search, the simplest algorithm which just tries all paths. The algorithm is called recursively on the current
state s and the path leading up to that state. If we have reached a goal, then we can update the minimum cost path with the current path.
Otherwise, we consider all possible actions a from state s, and recursively search each of the possibilities.

• Graphically, backtracking search performs a depth-first traversal of the search tree. What is the time and memory complexity of this algorithm?

• To get a simple characterization, assume that the search tree has maximum depth D (each path consists of D actions/edges) and that there
are b available actions per state (the branching factor is b).

• It is easy to see that backtracking search only requires O(D) memory (to maintain the stack for the recurrence), which is as good as it gets.

• However, the running time is proportional to the number of nodes in the tree, since the algorithm needs to check each of them. The number

of nodes is 1 + b + b2 + · · · + bD = bD+1−1
b−1 = O(bD). Note that the total number of nodes in the search tree is on the same order as the

number of leaves, so the cost is always dominated by the last level.
• In general, there might not be a finite upper bound on the depth of a search tree. In this case, there are two options: (i) we can simply cap

the maximum depth and give up after a certain point or (ii) we can disallow visits to the same state.
• It is worth mentioning that the greedy algorithm that repeatedly chooses the lowest action myopically won’t work. Can you come up with an

example?

Backtracking search

Algorithm: backtracking search

def backtrackingSearch(s, path):

If IsEnd(s): update minimum cost path

For each action a ∈ Actions(s):

Extend path with Succ(s, a) and Cost(s, a)

Call backtrackingSearch(Succ(s, a), path)

Return minimum cost path

[live solution: backtrackingSearch]

CS221 40

Depth-first search

Assumption: zero action costs

Assume action costs Cost(s, a) = 0.

Idea: Backtracking search + stop when find the first end state.

If b actions per state, maximum depth is D actions:

• Space: still O(D)

• Time: still O(bD) worst case, but could be much better if solutions are easy to find

CS221 42

• Backtracking search will always work (i.e., find a minimum cost path), but there are cases where we can do it faster. But in order to do that,
we need some additional assumptions — there is no free lunch.

• Suppose we make the assumption that all the action costs are zero. In other words, all we care about is finding a valid action sequence that
reaches the goal. Any such sequence will have the minimum cost: zero.

• In this case, we can just modify backtracking search to not keep track of costs and then stop searching as soon as we reach a goal. The
resulting algorithm is depth-first search (DFS), which should be familiar to you. The worst time and space complexity are of the same order
as backtracking search. In particular, if there is no path to an end state, then we have to search the entire tree.

• However, if there are many ways to reach the end state, then we can stop much earlier without exhausting the search tree. So DFS is great
when there are an abundance of solutions.

Breadth-first search

Assumption: constant action costs

Assume action costs Cost(s, a) = c for some c ≥ 0.

Idea: explore all nodes in order of increasing depth.

Legend: b actions per state, solution has d actions

• Space: now O(bd) (a lot worse!)

• Time: O(bd) (better, depends on d, not D)

CS221 44

• Breadth-first search (BFS), which should also be familiar, makes a less stringent assumption, that all the action costs are the same
non-negative number. This effectively means that all the paths of a given length have the same cost.

• BFS maintains a queue of states to be explored. It pops a state off the queue, then pushes its successors back on the queue.

• BFS will search all the paths consisting of one edge, two edges, three edges, etc., until it finds a path that reaches a end state. So if the
solution has d actions, then we only need to explore O(bd) nodes, thus taking that much time.

• However, a potential show-stopper is that BFS also requires O(bd) space since the queue must contain all the nodes of a given level of the
search tree. Can we do better?

DFS with iterative deepening

Assumption: constant action costs

Assume action costs Cost(s, a) = c for some c ≥ 0.

Idea:

• Modify DFS to stop at a maximum depth.

• Call DFS for maximum depths 1, 2,

DFS on d asks: is there a solution with d actions?

Legend: b actions per state, solution size d

• Space: O(d) (saved!)

• Time: O(bd) (same as BFS)

CS221 46

• Yes, we can do better with a trick called iterative deepening. The idea is to modify DFS to make it stop after reaching a certain depth.
Therefore, we can invoke this modified DFS to find whether a valid path exists with at most d edges, which as discussed earlier takes O(d)
space and O(bd) time.

• Now the trick is simply to invoke this modified DFS with cutoff depths of 1, 2, 3, . . . until we find a solution or give up. This algorithm is
called DFS with iterative deepening (DFS-ID). In this manner, we are guaranteed optimality when all action costs are equal (like BFS), but
we enjoy the parsimonious space requirements of DFS.

• One might worry that we are doing a lot of work, searching some nodes many times. However, keep in mind that both the number of leaves
and the number of nodes in a search tree is O(bd) so asymptotically DFS with iterative deepening is the same time complexity as BFS.

Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm Action costs Space Time

Backtracking any O(D) O(bD)

DFS zero O(D) O(bD)

BFS constant ≥ 0 O(bd) O(bd)

DFS-ID constant ≥ 0 O(d) O(bd)

• Always exponential time

• Avoid exponential space with DFS-ID

CS221 48

• Here is a summary of all the tree search algorithms, the assumptions on the action costs, and the space and time complexities.

• The take-away is that we can’t avoid the exponential time complexity, but we can certainly have linear space complexity. Space is in some
sense the more critical dimension in search problems. Memory cannot magically grow, whereas time ”grows” just by running an algorithm for
a longer period of time, or even by parallelizing it across multiple machines (e.g., where each processor gets its own subtree to search).

Tree Search Review

CS221 50

Search: dynamic programming

Dynamic programming

state s

state s′

end state

FutureCost(s′)

Cost(s, a)

Minimum cost path from state s to a end state:

FutureCost(s) =

{
0 if IsEnd(s)

mina∈Actions(s)[Cost(s, a) + FutureCost(Succ(s, a))] otherwise

CS221 54

• Now let’s see if we can avoid the exponential running time of tree search. Our first algorithm will be dynamic programming. We have already
seen dynamic programming in specific contexts. Now we will use the search problem abstraction to define a single dynamic program for all
search problems.

• First, let us try to think about the minimum cost path in the search tree recursively. Define FutureCost(s) as the cost of the minimum cost
path from s to some end state. The minimum cost path starting with a state s to an end state must take a first action a, which results in
another state s′, from which we better take a minimum cost path to the end state.

• Written in symbols, we have a nice recurrence. Throughout this course, we will see many recurrences of this form. The basic form is a base
case (when s is a end state) and an inductive case, which consists of taking the minimum over all possible actions a from s, taking an initial
step resulting in an immediate action cost Cost(s, a) and a future cost.

Motivating task

Example: route finding

Find the minimum cost path from city 1 to city n, only moving forward. It costs cij
to go from i to j.

1

2

3

4

5

6

7

7

6

7

7

5

6

7

7

6

7

7

4

5

6

7

7

6

7

7

5

6

7

7

6

7

7

3

4

5

6

7

7

6

7

7

5

6

7

7

6

7

7

4

5

6

7

7

6

7

7

5

6

7

7

6

7

7

Observation: future costs only depend on current city

CS221 56

• Now let us see if we can avoid the exponential time. If we consider the simple route finding problem of traveling from city 1 to city n, the
search tree grows exponentially with n.

• However, upon closer inspection, we note that this search tree has a lot of repeated structures. Moreover (and this is important), the future
costs (the minimum cost of reaching a end state) of a state only depends on the current city! So therefore, all the subtrees rooted at city 5,
for example, have the same minimum cost!

• If we can just do that computation once, then we will have saved big time. This is the central idea of dynamic programming.

• We’ve seen dynamic programming in earlier algorithms classes. The purpose here is to construct one generic dynamic programming solution
that will work on any search problem. Again, this highlights the useful division between modeling (defining the search problem) and algorithms
(performing the actual search).

Dynamic programming

State: past sequence of actions current city

1

2

3
4

5

6

7

Exponential saving in time and space!

CS221 58

• Let us collapse all the nodes that have the same city into one. We no longer have a tree, but a directed acyclic graph with only n nodes
rather than exponential in n nodes.

• Note that dynamic programming is only useful if we can define a search problem where the number of states is small enough to fit in memory.

Dynamic programming

Algorithm: dynamic programming

def DynamicProgramming(s):

If already computed for s, return cached answer.

If IsEnd(s): return solution

For each action a ∈ Actions(s): ...

[live solution: Dynamic Programming]

Assumption: acyclicity

The state graph defined by Actions(s) and Succ(s, a) is acyclic.

CS221 60

• The dynamic programming algorithm is exactly backtracking search with one twist. At the beginning of the function, we check to see if we’ve
already computed the future cost for s. If we have, then we simply return it (which takes constant time if we use a hash map). Otherwise,
we compute it and save it in the cache so we don’t have to recompute it again. In this way, for every state, we are only computing its value
once.

• For this particular example, the running time is O(n2), the number of edges.

• One important point is that the graph must be acyclic for dynamic programming to work. If there are cycles, the computation of a future
cost for s might depend on s′ which might depend on s. We will infinite loop in this case. To deal with cycles, we need uniform cost search,
which we will describe later.

Dynamic programming

Key idea: state

A state is a summary of all the past actions sufficient to choose future actions opti-
mally.

past actions (all cities) 1 3 4 6

state (current city) 1 3 4 6

CS221 62

• So far, we have only considered the example where the cost only depends on the current city. But let’s try to capture exactly what’s going
on more generally.

• This is perhaps the most important idea of this lecture: state. A state is a summary of all the past actions sufficient to choose future actions
optimally.

• What state is really about is forgetting the past. We can’t forget everything because the action costs in the future might depend on what we
did on the past. The more we forget, the fewer states we have, and the more efficient our algorithm. So the name of the game is to find the
minimal set of states that suffice. It’s a fun game.

Handling additional constraints

Example: route finding

Find the minimum cost path from city 1 to city n, only moving forward. It costs cij
to go from i to j.

Constraint: Can’t visit three odd cities in a row.

State: (whether previous city was odd, current city)

n/a, 1

odd, 3

odd, 7 odd, 4

7:c37 4:c34

odd, 4

even, 5

5:c45

3:c13 4:c14

CS221 64

• Let’s add a constraint that says we can’t visit three odd cities in a row. If we only keep track of the current city, and we try to move to a
next city, we cannot enforce this constraint because we don’t know what the previous city was. So let’s add the previous city into the state.

• This will work, but we can actually make the state smaller. We only need to keep track of whether the previous city was an odd numbered
city to enforce this constraint.

• Note that in doing so, we have 2n states rather than n2 states, which is a substantial savings. So the lesson is to pay attention to what
information you actually need in the state.

Question

Objective: travel from city 1 to city n, visiting at least 3 odd cities. What is the minimal state?

think and share

CS221 66

State graph

State: (min(number of odd cities visited, 3), current city)

1,1

1,2

1,3 1,4

1,5

1,6

2,1

2,2

2,3 2,4

2,5

2,6

3,1

3,2

3,3 3,4

3,5

3,6

CS221 68

• Our first thought might be to remember how many odd cities we have visited so far (and the current city).

• But if we’re more clever, we can notice that once the number of odd cities is 3, we don’t need to keep track of whether that number goes
up to 4 or 5, etc. So the state we actually need to keep is (min(number of odd cities visited, 3), current city). Thus, our state space is O(n)
rather than O(n2).

• We can visualize what augmenting the state does to the state graph. Effectively, we are copying each node 4 times, and the edges are
redirected to move between these copies.

• Note that some states such as (2, 1) aren’t reachable (if you’re in city 1, it’s impossible to have visited 2 odd cities already); the algorithm
will not touch those states and that’s perfectly okay.

Question

Objective: travel from city 1 to city n, visiting more odd than even cities. What is the minimal
state?

think and share

CS221 70

• An initial guess might be to keep track of the number of even cities and the number of odd cities visited.

• But we can do better. We have to just keep track of the number of odd cities minus the number of even cities and the current city. We can
write this more formally as (n1 − n2, current city), where n1 is the number of odd cities visited so far and n2 is the number of even cities
visited so far.

Summary

• State: summary of past actions sufficient to choose future actions optimally

• Dynamic programming: backtracking search with memoization — potentially exponen-
tial savings

Dynamic programming only works for acyclic graphs...what if there are cycles?

CS221 72

Dynamic Programming Review

state s

state s′

end state

FutureCost(s′)

Cost(s, a)

FutureCost(s) =

{
0 if IsEnd(s)

mina∈Actions(s)[Cost(s, a) + FutureCost(Succ(s, a))] otherwise

Key idea: state

A state is a summary of all the past actions sufficient to choose future actions opti-
mally.

CS221 74

Search: uniform cost search

Ordering the states

Observation: prefixes of optimal path are optimal

sstart s s′

PastCost(s) Cost(s, a)

Key: if graph is acyclic, dynamic programming makes sure we compute PastCost(s) before
PastCost(s′)

If graph is cyclic, then we need another mechanism to order states...

CS221 78

• Recall that we used dynamic programming to compute the future cost of each state s, the cost of the minimum cost path from s to a end
state.

• We can analogously define PastCost(s), the cost of the minimum cost path from the start state to s. If instead of having access to the
successors via Succ(s, a), we had access to predecessors (think of reversing the edges in the state graph), then we could define a dynamic
program to compute all the PastCost(s).

• Dynamic programming relies on the absence of cycles, so that there is always a clear order in which to compute all the past costs. If the past
costs of all the predecessors of a state s are computed, then we could compute the past cost of s by taking the minimum.

• Note that PastCost(s) will always be computed before PastCost(s′) if there is an edge from s to s′. In essence, the past costs will be computed
according to a topological ordering of the nodes.

• However, when there are cycles, no topological ordering exists, so we need another way to order the states.

Uniform cost search (UCS)

Key idea: state ordering

UCS enumerates states in order of increasing past cost.

Assumption: non-negativity

All action costs are non-negative: Cost(s, a) ≥ 0.

UCS in action:

CS221 80

• The key idea that uniform cost search (UCS) uses is to compute the past costs in order of increasing past cost. To make this efficient, we
need to make an important assumption that all action costs are non-negative.

• This assumption is reasonable in many cases, but doesn’t allow us to handle cases where actions have payoff. To handle negative costs
(positive payoffs), we need the Bellman-Ford algorithm. When we talk about value iteration for MDPs, we will see a form of this algorithm.

• Note: those of you who have studied algorithms should immediately recognize UCS as Dijkstra’s algorithm. Logically, the two are indeed
equivalent. There is an important implementation difference: UCS takes as input a search problem, which implicitly defines a large and even
infinite graph, whereas Dijkstra’s algorithm (in the typical exposition) takes as input a fully concrete graph. The implicitness is important in
practice because we might be working with an enormous graph (a detailed map of world) but only need to find the path between two close
by points (Stanford to Palo Alto).

• Another difference is that Dijkstra’s algorithm is usually thought of as finding the shortest path from the start state to every other node,
whereas UCS is explicitly about finding the shortest path to an end state. This difference is sharpened when we look at the A* algorithm next
time, where knowing that we’re trying to get to the goal can yield a much faster algorithm. The name uniform cost search refers to the fact
that we are exploring states of the same past cost uniformly (the video makes this visually clear); in contrast, A* will explore states which are
biased towards the end state.

High-level strategy

Frontier

Explored

Unexplored

• Explored: states we’ve found the optimal path to

• Frontier: states we’ve seen, still figuring out how to get there cheaply

• Unexplored: states we haven’t seen

CS221 82

• The general strategy of UCS is to maintain three sets of nodes: explored, frontier, and unexplored. Throughout the course of the algorithm,
we will move states from unexplored to frontier, and from frontier to explored.

• The key invariant is that we have computed the minimum cost paths to all the nodes in the explored set. So when the end state moves into
the explored set, then we are done.

Uniform cost search example

Example: UCS example

A

B

C

D

Start state: A, end state: D

[whiteboard]

Minimum cost path:

A → B → C → D with cost 3

CS221 84

• Before we present the full algorithm, let’s walk through a concrete example.

• Initially, we put A on the frontier. We then take A off the frontier and mark it as explored. We add B and C to the frontier with past costs 1
and 100, respectively.

• Next, we remove from the frontier the state with the minimum past cost (priority), which is B. We mark B as explored and consider successors
A, C, D. We ignore A since it’s already explored. The past cost of C gets updated from 100 to 2. We add D to the frontier with initial past
cost 101.

• Next, we remove C from the frontier; its successors are A, B, D. A and B are already explored, so we only update D’s past cost from 101 to 3.

• Finally, we pop D off the frontier, find that it’s a end state, and terminate the search.

