
Final Exam Review

Final Exam Review

Embedded Ethics Evaluation Survey

1/41

Embedded Ethics Evaluation Survey

Please take a few minutes to check the pinned post on Ed about

the Ethics Survey!

2/41

Final Exam Review

Course Modules

3/41

Course Modules

• Factor Graphs (Constraint Satisfaction Problems or CSPs)
• Factors, Satisfiability, Backtracking Search (MCV/LCV),

Forward Checking, Arc Consistency, Beam Search,

Local Search (ICM)

• Markov Nets
• Factor Graphs, Assignment Weights, Joint Probability,

Marginal Probability, Gibbs Sampling

• Bayesian Nets
• Probabilistic Inference, HMMs (Forward/Backward),

Particle Filtering, Supervised Learning (Maximum Likelihood),

Laplace Smoothing, EM

• Logic
• Natural Language ⇐⇒ Logic Expressions,

Knowledge Base (Entailment, Contradiction, Contingency),

Completeness, Soundness

Unlike past final exams, there will be no Ethics problem this time. 4/41

Today’s Review

Today, we’ll cover:

• Aut 2022 Final’s CSP Problem

• Winter 2021 Final’s Bayesian Net Problem

We will give the problems extra adjustments to cover more

concepts from their respective topic (including Markov Nets).

For reviewing Logic:

• Be ready to translate between natural language and logic

expressions like you did on your HW!

• Know how to fact check when adding new information to a

knowledge base causes (i) entailment vs (ii) contradiction vs

(iii) contingency (see Problem Session 9)!

• Understand the difference between completeness & soundness.
5/41

Final Exam Review

Constraint Satisfaction Problem (CSP)

Review

6/41

Breaking down the Problem

• n teams indexed by i , each with strength 0 ≤ si ≤ 100

• Must split teams into groups of 4 for m = n
4 total groups,

with Xi = {1, . . . ,m} being the group that we assign team i

• Strength of an assignment X = (X1, . . . ,Xn) is
∏m

j

∑
i :Xi=j si 7/41

Defining the Factors

Breaking down the problem:

• n teams indexed by i , each with strength 0 ≤ si ≤ 100

• Must split teams into groups of 4 for m = n
4 total groups,

with Xi = {1, . . . ,m} being the group that we assign team i

• Strength of an assignment X = (X1, . . . ,Xn) is
∏m

j

∑
i :Xi=j si

We see that

• The 1st piece of info just specifies variable definitions.

• The 2nd piece of info asks for a boolean constraint or factor.

• The 3rd piece of info asks for a weight factor.

8/41

Defining the Factors

Factor Graph

• Variables: X = (X1, . . . ,Xn) where Xi ∈ Domaini

• Factors: f1, . . . , fm, with each fj(X) ≥ 0.

x1 x2 x3

f1 f2 f3 f4

• Constraints: Factors that return 0 or 1.

Assignment Weight: Every assignment x = (x1, . . . , xn) has

Weight(x) =
m∏
j=1

fj(x)

• Consistent if Weight(x) > 0.

• A CSP is satisfiable if maxx Weight(x) > 0. 9/41

Defining the Factors

Breaking down the problem:

• Must split teams into groups of 4 for m = n
4 total groups,

with Xi = {1, . . . ,m} being the group that we assign team i .

We see that

• This piece of info asks for a boolean constraint or factor.

From the previous slide: Every assignment x = (x1, . . . , xn) has

Weight(x) =
m∏
j=1

fj(x)

The purpose of a boolean factor is to make the weight 0 if the

constraint is violated (evaluates to false) based on an assignment,

as an assignment is only consistent if Weight(x) > 0.

10/41

Defining the Factors

Breaking down the problem:

• Must split teams into groups of 4 for m = n
4 total groups,

with Xi = {1, . . . ,m} being the group that we assign team i .

We see that

• This piece of info asks for a boolean constraint or factor.

For boolean factors, the indicator function is your best friend!

Define a factor for each group j that checks whether the size of

the group is 4, returning 1 or 0 via the indicator function:

fj(X1, . . . ,Xn) = 1[|{i : Xi = j}| = 4]

We have m constraint factors in all, each one takes every variable

(each representing a team) as arguments, builds a set of all teams

assigned to group j , and checks if the set size is 4. 11/41

Defining the Factors

Breaking down the problem:

• Must split teams into groups of 4 for m = n
4 total groups,

with Xi = {1, . . . ,m} being the group that we assign team i .

We see that

• This piece of info asks for a boolean constraint or factor.

Define a factor for each group j that checks whether the size of

the group is 4, returning 1 or 0 via the indicator function:

fj(X1, . . . ,Xn) = 1[|{i : Xi = j}| = 4]

Another way to write this:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]
Both would be accepted answers! 12/41

Defining the Factors

Breaking down the problem:

• Strength of an assignment X = (X1, . . . ,Xn) is
∏m

j

∑
i :Xi=j si

We see that

• This piece of info asks for a weight factor.

From the previous slide: Every assignment x = (x1, . . . , xn) has

Weight(x) =
m∏
j=1

fj(x)

The purpose of a weight factor is to measure how “good an

assignment is” so that we can compare assignments when looking

for the maximum weight assignment.

13/41

Defining the Factors

Breaking down the problem:

• Strength of an assignment X = (X1, . . . ,Xn) is
∏m

j

∑
i :Xi=j si

We see that

• This piece of info asks for a weight factor.

From the previous slide: Every assignment x = (x1, . . . , xn) has

Weight(x) =
m∏
j=1

fj(x)

We can take advantage of the above definition to write:

hj(X1, . . . ,Xn) =
n∑

i :Xi=j

si

One factor for each group j , summing up the strengths of each

team i within the group. 14/41

Defining the Factors

Every assignment x = (x1, . . . , xn) has

Weight(x) =
m∏
j=1

fj(x)

The purpose of a weight factor is to measure how “good an

assignment is” so that we can compare assignments when looking

for the maximum weight assignment.

Food for thought: How would you encode factors that you want to

minimize?

Suppose instead of measuring each team’s strengths, we measure

their weaknesses wi . Then, define the weakness of an assignment

X = (X1, . . . ,Xn) as
∏m

j

∑
i :Xi=j wi .

Write a factor that helps minimize the weakness of an assignment.
15/41

Defining the Factors

Food for thought: How would you encode factors that you want to

minimize?

Suppose instead of measuring each team’s strengths, we measure

their weaknesses wi . Then, define the weakness of an assignment

X = (X1, . . . ,Xn) as
∏m

j

∑
i :Xi=j wi .

Write a factor that helps minimize the weakness of an assignment.

Use the inverse function!

hj(X1, . . . ,Xn) =

 n∑
i :Xi=j

wi

−1

One factor for each group j , summing up the weakness of each

team i within the group and then inverting.

16/41

Continuing the Problem

More of a math trick question; need to realize:

• The team strengths all add up to 2C .

• No matter how you split the teams into 2 groups, you can

represent the group strengths as C − δ and C + δ.

• The total strength of a group is encoded in our factor:

hj(X1, . . . ,Xn) =
n∑

i :Xi=j

si

so we have h1 = C − δ and h2 = C + δ.

17/41

Continuing the Problem

• The total strength of a group is encoded in our factor:

hj(X1, . . . ,Xn) =
n∑

i :Xi=j

si

so we have h1 = C − δ and h2 = C + δ.

• Weight of an assignment is simply the product of all factors.

Our constraint factors always evaluate to 0 or 1, so any

non-zero assignment weight is the result of:

h1h2 = (C − δ)(C + δ) = C 2 − δ2

which is always at most C 2. 18/41

Dynamic Ordering for Backtracking Search

Recall backtracking search is essentially a brute-force algorithm

that eventually finds the optimal (maximum weight) assignment for

a CSP (see Problem Session 6 for an example + forward checking).

LCV and MCV are heuristics that speed up backtracking search. 19/41

Dynamic Ordering for Backtracking Search

Quick refresher of backtracking search for the 4-Queens problem:

20/41

Dynamic Ordering for Backtracking Search

LCV and MCV are heuristics that speed up backtracking search.

Whenever backtracking search is about to choose the next variable

to assign:

• MCV chooses the variable with the smallest domain

(smallest number of values that we can assign to it).

Whenever backtracking search is about to decide what value to

assign a chosen variable:

• LCV assigns the value that reduces the number of values that

we can assign to the other variables the least.

• Arbitrary Example: Suppose assigning X1 = 1 reduces the

domain of X2 to {1, 2, 3}, but assigning X1 = 2 reduces the

domain of X2 to {1, 2, 3, 4}; then LCV tries X1 = 2 first.

21/41

Dynamic Ordering for Backtracking Search

Back to the problem:

• Backtracking search can always be used to find the optimal

assignment. There are no problems here with using it.

The other two parts aren’t the best written... 22/41

Dynamic Ordering for Backtracking Search

What this problem was based on are the following facts:

• LCV does not make sense if not all factors are constraints,

because we’ll want to try all value assignments for a variable

eventually to determine the maximum weight assignment.

• MCV works as long as there are some constraint factors that

help prune away the domain of variables.

23/41

Dynamic Ordering for Backtracking Search

For this problem, not all our factors are constraints, so LCV cannot

be used, but MCV can be used (technically).

However... MCV wouldn’t really give us a speed up here because

our constraint factor doesn’t actually prune domains:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]
24/41

Dynamic Ordering for Backtracking Search

Recall our only constraint factor:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]

At any given point in our backtracking search, we can always

assign a team i to any of the remaining groups with fewer than

4 teams. There are no constraints that make one team more

constrained than another in what we can assign.
25/41

Dynamic Ordering for Backtracking Search

Recall our only constraint factor:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]

At any given point in our backtracking search, we can always

assign a team i to any of the remaining groups with fewer than

4 teams. There are no constraints that make one team more

constrained than another in what we can assign.

Food for thought: Come up with a new constraint for a

hypothetical scenario that would make MCV more relevant.

26/41

Dynamic Ordering for Backtracking Search

Recall our only constraint factor:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]

At any given point in our backtracking search, we can always

assign a team i to any of the remaining groups with fewer than

4 teams. There are no constraints that make one team more

constrained than another in what we can assign.

Food for thought: Come up with a new constraint for a

hypothetical scenario that would make MCV more relevant.

Let each group have a pre-assigned leader, and only teams with

lower strength than the leader of a group can be put in that group.

Essentially, MCV is useful when there are conflict in assignments!
27/41

Continuing the Problem

This is essentially a logic exercise. First, translate the constraint:

• For each team i , that team is either not in the same group as

Team 1 OR has a strength less than or equal to si .

This naturally leads to the expression:

Xi ̸= X1 ∨ s1 ≥ si

which can be expressed as a factor via the indicator function:

fi (X1,Xi) = 1[Xi ̸= X1 ∨ s1 ≥ si]

28/41

Arc Consistency

Arc Consistency: A variable Xi is arc consistent with respect to

Xj if for each xi ∈ Domaini , there exists xj ∈ Domainj such that

f (Xi = xi ,Xj = xj) ̸= 0

for all f whose scope contains Xi and Xj . 29/41

Arc Consistency

Before AC-3, all teams besides the USA have domains: {1, 2}.
On the 1st pass of AC-3:

• We examine Xj = USA.

• Iran, Japan, & Senegal all still have domains of {1, 2}.
• France, Brazil, Morocco, & UK all have their domains reduced

to {2} because of the Part d constraint.

• Domains of France, Brazil, Morocco, and UK changed, thus

we put them back into the set S to examine next. 30/41

Arc Consistency

On the 2nd pass of AC-3:

• We examine Xj = France.

• Teams Iran, Japan, and Senegal all have their domains

reduced to {1} because of our original constraint:

fj(X1, . . . ,Xn) = 1

[(
n∑
i

1[Xi = j]

)
= 4

]
• Further passes of AC-3 produce no more changes.

31/41

Arc Consistency

So we have

• Team 1: USA, Iran, Japan, Senegal

• Team 2: France, Brazil, Morocco, UK

In this case, arc consistency also solved our CSP for us!

32/41

Arc Consistency

But recall from class that AC-3 only looks locally!

• In the example from class, AC-3 reduced the domains of each

node above to 2 assignable colors: red and blue.

• Each node cannot have the same color as a neighboring node,

thus, this CSP is not satisfiable!

• Can’t assign 2 colors to 3 nodes!

• But AC-3 cannot detect this!
33/41

Local Search

Backtracking search and arc consistency help build up assignments.

What if we already have an assignment? Local search to improve!

Consider the modified problem:

• We want 2 groups, with each group having at least 2 teams.

• We still define the strength of an assignment the same way,

thus we still have our factor:

hj(X1, . . . ,Xn) =
n∑

i :Xi=j

si
34/41

Local Search

Consider the modified problem:

• We want 2 groups, with each group having at least 2 teams.

• We still define the strength of an assignment the same way,

thus we still have our factor:

hj(X1, . . . ,Xn) =
n∑

i :Xi=j

si

Suppose we start with the above “random” assignments.

Let’s use local search to find a better assignment!
35/41

Local Search

1st iteration:

• USA cannot be reassigned, as Group 1 needs at least 2 teams.

• Iran cannot be reassigned, as Group 1 needs at least 2 teams.

• Reassigning France to Group 1 yields a higher weight:

(60 + 50 + 100) ∗ (90 + 60) = 31500

vs (60 + 50) ∗ (100 + 90 + 60) = 27500

• Reassigning France lowers the size of Group 2 to 2, so Brazil

and Japan cannot be reassigned.

36/41

Local Search

2nd iteration:

• USA can be reassigned, but whether it’s in Group 1 or 2 will

lead to the same weight total of 150 ∗ 210. Let it stay in 1.

• Reassigning Iran to Group 2 yields a higher weight:

(60 + 50 + 100) ∗ (90 + 60) = 31500

vs (60 + 100) ∗ (50 + 90 + 60) = 32000

• Group 1 now has only 2 teams, so France stays.

• Continued next slide...

37/41

Local Search

2nd iteration:

• Brazil can be reassigned, but it staying in Group 2 yields a

higher weight: (60 + 100 + 90) ∗ (50 + 60) = 27500

vs (60 + 100) ∗ (50 + 90 + 60) = 32000

• Japan can be reassigned, but it staying in Group 2 yields a

higher weight: (60 + 100 + 60) ∗ (50 + 90) = 30800

vs (60 + 100) ∗ (50 + 90 + 60) = 32000

Any more iterations won’t lead to any changes.
38/41

Local Search

And so we went from:

to

39/41

Local Search

Note that this isn’t the most optimal assignment!

Assigning USA + Iran + Japan to Group 1 and France + Brazil to

Group 2 yields a higher weight of 32300!

ICM can get stuck in local maxima!

40/41

Final Exam Review

Markov / Bayesian Nets Review

41/41

	Final Exam Review
	Embedded Ethics Evaluation Survey
	Course Modules
	Constraint Satisfaction Problem (CSP) Review
	Markov / Bayesian Nets Review

