CS221 Final Exam Review

Week 10

Stanford University

Questions encountered

- What is the difference between a Markov net, Bayesian net, HMM and Markov model?
- Why Gibbs sampling? How to compute $P(x_i | X_{i})$?
- What is the FB algorithm? What does F and B mean? Why is it prob? Why do we only we use it for HMMs?

Outline

- Markov networks vs Bayesian networks vs Markov models vs HMMs
- Markov networks
 - Gibbs sampling
- Bayesian networks
 - Forward backward algorithm

What are we leaving out?

- More about Bayesian networks <u>PS week 8</u>
- Logic <u>PS week 9</u>

Outline

- Markov networks vs Bayesian networks vs Markov models vs HMMs
- Markov networks
 - Gibbs sampling
- Bayesian networks
 - Forward backward algorithm

All the different nets

$$g(x_{1}, x_{2}, x_{3}, x_{4}) = f_{1}(x_{1}, x_{2}, x_{3}) \times f_{2}(x_{3}, x_{4})$$

Markov networks: g = P when normalized, $f'_i >= 0$

Bayesian networks: g = P, and f_i's are conditional Ps, hence directed and Z = 1

All the different nets

$$g(x_{1}, x_{2}, x_{3}, x_{4}) = f_{1}(x_{1}, x_{2}, x_{3}) \times f_{2}(x_{3}, x_{4})$$

Markov networks: g = P when normalized, $f'_i s \ge 0$

Bayesian networks: g = P, and f_i's are conditional Ps, hence directed and Z = 1 Markov models:

HMMs:

All the different nets

$$g(x_1, x_2, x_3, x_4) = f_1(x_1, x_2, x_3) \times f_2(x_3, x_4)$$

Why factorize?

- Simplifies g
- Reduced # params
- Table size: O(|domain|⁴) reduced to O(|domain|³)

Outline

- Markov networks vs Bayesian networks vs Markov models vs HMMs
- Markov networks
 - Gibbs sampling
- Bayesian networks
 - Forward backward algorithm

Markov nets

Markov nets

Markov nets

Markov nets: Why Gibbs?

Compute P(x_i) using P(x_i | X_i) instead of summing over X_i

```
Algorithm: Gibbs sampling

Initialize x to a random complete assignment

Loop through i = 1, ..., n until convergence:

Set x_i = v with prob. \mathbb{P}(X_i = v \mid X_{-i} = x_{-i})

(X_{-i} \text{ denotes all variables except } X_i)

Increment count<sub>i</sub>(x_i)

Estimate \hat{\mathbb{P}}(X_i = x_i) = \frac{\text{count}_i(x_i)}{\sum_v \text{ count}_i(v)}
```

For more practice on Gibbs sampling: refer <u>PS week 7</u>

Outline

- Markov networks vs Bayesian networks vs Markov models vs HMMs
- Markov networks
 - Gibbs sampling
- Bayesian networks
 - Forward backward algorithm

Forward backward algorithm

- Compute P(h, | e's)
- Applicable only to HMMs or similar
- What special about markov models?
 - \circ One parent for each node

Intuition:

$$F(h_i) = P(h_i, e_i | e_{

$$B(h_i) = P(e_{>i} | h_i)$$

$$S(h_i) \propto P(h_i, e_i | e_{i} | h_i) \propto P(h_i | e's)$$$$

For more details refer: wiki

Problem: P2, Winter 2021 Exam 2

How does the bayesian net look?

• Stop after two steps, observe {H,H}

- Stop after two steps, observe {H,H}
- Draw FB lattice representation

- Stop after two steps, observe {H,H}
- What are the weights of edges?

- Stop after two steps, observe {H,H}
- Compute forward passes and backward passes

- Stop after two steps, observe {H,H}
- Compute forward passes and backward passes

$$F_{1}(X) = \lambda_{0}p_{X}$$

$$F_{2}(X) = w(X, X) \cdot F_{1}(X) + w(Y, X) \cdot F_{1}(Y)$$

$$F_{1}(Y) = (1 - \lambda_{0})p_{Y}$$

$$F_{2}(Y) = w(X, Y) \cdot F_{1}(X) + w(Y, Y) \cdot F_{1}(Y)$$

$$B_{2}(X) = 1$$

$$B_{1}(X) = w(X, X) \cdot B_{2}(X) + w(X, Y) \cdot B_{2}(Y)$$

$$B_{1}(Y) = w(Y, X) \cdot B_{2}(X) + w(Y, Y) \cdot B_{2}(Y)$$

For more about Bayesian networks: <u>PS Week 8</u>

Thank you!

Good luck on the exam!

Stanford University