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Computing the Gradient

e The gradient is the direction of greatest ascent

w

e With one variable it’s the slope of the tangent
line to the curve

N

e Example:

f(z) =2*
Vf(z) =2z
Vf(z)|e=1 =2
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Computing the Gradient

e How about for multiple dimensions? ovement o g
e We have to take the derivative with respect to
each variable. .
e Example: :
5 OITEeSPO o moveme C C
f(xvy) =Ty
[ Of
o
VH(zy) = | 5 w
L Oy
[2zy
Vf(m1y) = 2 ]
T
- oction of steepe -

Image Credit: Khan Academy
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Computing the Gradient

e Sometimes we only care about the gradient
with respect to a subset of variables.

e |n this case we can treat the other variables as
constants.

RN . ‘

e Example: ‘k St

Compute the gradient with respect to w:

flz,y,w) = (M)w

T

Gradient Vectors Shown at Several Points on the
log(m) dy Surface of cos(x) sin(y)

wa(x9 Y, w) -

Image Credit: Saint John Fisher University
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Preview: What is a Loss Function?

In Machine Learning we are finding functions that best approximate
the mapping from inputs to outputs.

® //
Example: Linear Regression
o
w=[wy w]
®
flz,w) = wy -+ w
®

Want to find the best values of w;and
w, such that f best fits the data points. —05 o

®

05 15
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Preview: What is a Loss Function?

e How can we measure how good our current g

values of w are?

e Add up the (squared) distance between each data
point and our current model prediction

® Thisis an example of a loss function

Loss(z,y,w) = (fu(z) — ?J)z

® Minimizing the Loss: demo
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https://www.desmos.com/calculator/ryxopbezt4

Problem 1

1) Problem 1: Gradient computation

(i) Let ¢(z) : R — R% w € R? and f(z,w) = w - ¢(z). Consider the following loss
function.

Loss(z,y, w) = -;-max{Q — (w- ¢(x))y, 0}>. (1)

Compute its gradient V Loss(x,y, w).
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Gradient Descent

e How can we minimize the loss?

e The gradient points in the direction of steepest
*ascent*

e |f we move in the opposite direction we go in the
direction of steepest descent

e Gradient Descent Weight Updates:

w = w — nVyLoss(w)
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Stochastic Gradient Descent

® Pick out random data points to use for our loss
computation at each step instead of all data
points

e Why?
o More efficient
o  Can help escape shallow local minima

Image Credit: Er Ragabi EI Mehdi
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https://medium.com/@erraqabielmehdi?source=post_page-----26fa30a2b2b3--------------------------------

Step Size

w = w — nVyLoss(w)

Small learning rate Large learning rate

Lass Loss

\

Value of weight Vailue of weight

Image Credit: IBM
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Problem 3 (i)

3) Problem 3: Gradient and Gradient Descent

(i) Let ¢(z) : R — R?, w € R?. Consider the following loss function.

(1—-2(w-¢(z))y if (w-¢(x))y <0
Loss(z,y,w) = { (1— (W ¢(2))y)? if 0 < (W-o(z))y < 1

where y € R. Compute the gradient V,Loss(z,y, w).

Stanford University 12



Problem 3 (ii

(ii) Let d = 2 and ¢(z) = [1,z]. Consider the following training loss function.
TrainLoss(w) = %(Loss(xl, Y1, W) + Loss(zq, yo, w))
Compute V,,TrainLoss(w) for the following values of z1,y;, 2, y2, W.

1
W = [0,51,

I =—2, y1=1,

To = -]., o = —1.
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Problem 3 (iii

(iii) Now, let’s define the Gradient Descent update rule for some function TrainLoss(w) :
R s R. The rule helps us update the weights w.

w = w — V, TrainLoss(w), where 7 is the step size. (17)

Perform two iterations of Gradient Descent to minimize the objective function
TrainLoss(w) = %(Loss(a:l, Y1, w) + Loss(x2, yo, w)) with values for z;,y1, 2, y2 from

part (iii), using the weights update equation above. Use initialization w® = [0, ;] and

step size n = 3.
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Problem 2 (i)

Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.
Loss(z,y, w) = o(=(w - ¢(2))y),

where o(z) = (1 + exp(—=z))~' is the logistic function.
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Problem 2 (ii

(ii) Suppose we have the following loss function.
Loss(z,y, w) = max{l — | (w - ¢(z))y], 0}, (10)

where |a| returns a rounded down to the nearest integer. Determine what the gradient
of this function looks like, and whether gradient descent is suitable to optimize this

loss function.
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Looking Ahead: Linear Classification

e Now our weight vector defines a decision ‘ 2
plane

e |[f the dot product with our weight vector is
positive we assign a positive label to our 1

data point, otherwise negative.

e Perpendicular to the weight vector is the
decision plane.

-2 -1
w=[wy wi
fuw(z) = sign(w - x)
e Example: ® o —-1
w=[-1 1]
z1=[1 L.5]
fu(z1) = sign(—1+ 1.5) = sign(0.5) = + 2
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Problem 4 (1)

4) Problem 4 (Extra): Vector visualization
Recall that we can visualize a vector w € R? as a point in d-dimensional space. Let
us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider x € R?. Draw the line (i.e. the “decision boundary”) that separates
between vectors having a positive dot product with weights w = [3, —2| and those
having a negative dot product. Shade the part of the 2D plane that contains vectors
satisfying w - x > 0.

Hint: It might help to write out the expression for the dot product and seeing the
relation between xr; and x, that leads to a positive dot product. You could also use
the geometric interpretation of the dot product.
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Problem 4 (i1)

(i) Repeat the above for w = [2,0] and w = [0, 2].
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Problem 4 (iii

(iii) A small twist: visualize the set of vectors where w - x > 1 for w = [3, —2].
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Problem 4 (iv)

(iv) Consider the following element-wise inequality notation. For two vectors a,b € R,
a<b < a¢;<bH;Vi=12,...d. (18)

Suppose we have a matrix A € R?*? and a vector b € R? as follows.

A= [‘;’ ‘02] b=[1,0]. (19)

Visualize the set of vectors where Ax > b. Hint: A matrix vector product is a collection
of dot products, and the above set can be obtained by the intersection of two of the
sets constructed in the previous questions.
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Any final questions?
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Thank You
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