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Outline

● MDPs as a model
● What can we do with MDPs?
● Algorithms to solve problems related to MDPs
● Problem discussion



Search vs MDPs

● States
○ Start State

● Actions
● Goals
● Costs
● Successors

● States (S)
○ Start state

● Actions (A)
● Goals
● Rewards (R)
● Transitions (T)
● Discount factor (𝛾)



MDPs (Markov Decision Processes) Modeling
● In Markov decision processes, agents take actions, move from state to state according to a transition 

function, and receive rewards along the way

Set of states 𝑆 and set of actions 𝐴

▪ 𝑆 may include initial and/or terminal states

Transition function 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1], where 𝑇(𝑠, 𝑎, 𝑠′) = Pr(𝑠′|𝑠, 𝑎)

▪ Also called the model or dynamics of the problem

Reward function 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ, written as 𝑅 (𝑠, 𝑎, 𝑠′)

Why is it called “Markov”? → Past states do not affect current decision making



MDPs Example

Example borrowed from Prof. Tony Dear, Columbia University Department of Computer Science.



MDPs Example
States: Grid locations (11 in total)

● First two states in column 4 are terminal states

Actions: N, S, E, W (4 for each state)

Example borrowed from Prof. Tony Dear, Columbia University Department of Computer Science.



MDPs Example
States: Grid locations (11 in total)

● First two states in column 4 are terminal states

Actions: N, S, E, W (4 for each state)

Transition function: Intended direction with prob 0.8; otherwise, slip 
left or right with prob 0.1, respectively

● May stay in original state if moving into wall

Rewards: +1 or -1 for moving into terminal states; small negative 
reward otherwise (living reward)

Example borrowed from Prof. Tony Dear, Columbia University Department of Computer Science.



What is a policy?

● Mapping from state to action, for example

N

N

E E E

N

NE W



Outline

● MDPs as a model
● What can we do with MDPs?

○ Evaluate a policy
○ Find an optimal policy while being able to exploit - Life :)

● Algorithms to solve problems related to MDPs
● Problem discussion



1. Evaluate a given policy

● Given policy ℼ, compute “how good” the policy is (aka value)
● The value of a policy at a state is the expected utility.

● Related concept: Q value
○ Q𝛑(s,a) = Σ T(s,a,s’) [R(s,a,s’) + 𝛾 V𝛑(s’)]



Outline

● MDPs as a model
● What can we do with MDPs?

○ Evaluate a policy
○ Find an optimal policy while being able to exploit - Life :)

● Algorithms to solve problems related to MDPs
● Problem discussion



2. Find an optimal policy

● Given MDP M, find a policy ℼ* with highest value function V*
● i.e.

○ V*(s) >= V𝝅(s)    … for all the states s



Outline

● MDPs as a model
● What can we do with MDPs?

○ Evaluate a policy
○ Find an optimal policy while being able to exploit - Life :)

● Algorithms to solve problems related to MDPs
● Problem discussion



Algorithms
MDPs

Computing value 
of a given policy

Finding optimal 
policy

Model is unknown
● Model based 

Monte Carlo
● Q-learning

(need a policy 𝛑act)
how to choose one?

Model is known
● Value 

iteration

Model is unknown (RL)
● Model free Monte 

Carlo
● SARSA

Model is known
● Bellman’s 

equations
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How to choose policy 𝛑act 

● Greedy choice - choosing the optimal action (sub optimal result, as 
it does not explore enough)

● Random choice - estimates of Q values are good, but utility is bad
● Epsilon greedy - an interpolation between the two

○ Randomness allows for exploration
○ Exploitation leads to higher utility



Problems



Problem 1: MDP for Riding the Bus

Problem 1: MDP for Riding the Bus

Identifying an MDP

Finding Policy Value

Q-Learning



Problem 1: MDP for Riding the Bus

Identifying an MDP



Identifying an MDP

Sabina wants to go from their house (located at location 1) to the

gym (located at location n). At each location s, Sabina can either

(i) deterministically walk forward to the next location s + 1 (takes

1 unit of time) or (ii) wait for the bus.

The bus comes with probability ϵ, in which case, it will take Sabina

to the gym in 1 + α(n − s) units of time, where α is some

parameter. If the bus doesn’t come, then Sabina stays put waiting

for nothing, and that takes 1 unit of time.



Identifying an MDP

How can we model this as an MDP?

• S

• T

• A

• R

• T



Identifying an MDP

How can we model this as an MDP?

• States

• Termination State

• Actions

• Rewards

• Transitions



Identifying an MDP

How can we model this as an MDP?

• States:

s ∈ {1, 2, . . . , n}, Sabina’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards:
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• States: s ∈ {1, 2, . . . , n}, Sabina’s location.
• Termination State: 1[s = n]

• Actions: {Walk, Bus}
• Rewards:



Identifying an MDP

How can we model this as an MDP?

• Rewards:

Reward(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Reward(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

• Transitions:



Identifying an MDP

How can we model this as an MDP?

• Transitions:

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise



Problem 1: MDP for Riding the Bus

Finding Policy Value



Finding Policy Value

Compute closed form expressions for (i) the value of a policy where

Sabina always walks at every location and (ii) the value of a policy

where Sabina always waits for the bus at every location. Assume a

discount rate of γ = 1.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

VWalk(s) =

VBus(s) =



Finding Policy Value

Compute closed form expressions for the value of a policy where

Sabina always walks at every location.

T (s,Walk, s ′) =

1 if s ′ = s + 1

0 otherwise
R(s,Walk, s ′) =

−1 if s ′ = s + 1

−∞ otherwise

Note: The transition function for walking is deterministic!

VWalk(s) = −(n − s)
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Finding Policy Value

Compute closed form expressions for the value of a policy where

Sabina always walks at every location.
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Finding Policy Value

Compute closed form expressions for the value of a policy where

Sabina always waits for the bus at every location. Assume a

discount rate of γ = 1.

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s

−∞ otherwise

The transition function this time is NOT deterministic! Need:

Vπ(s) =
∑
s′

T (s, π(s), s ′)
[
Reward(s, π(s), s ′) + γVπ(s

′)
]

VBus(s) = P[bus comes and we go to n](R(s,Bus, n) + γVBus(n))

+P[bus doesn’t come and we stay at s](R(s,Bus, s) + γVBus(s))
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Finding Policy Value

Compute closed form expressions for the value of a policy where

Sabina always waits for the bus at every location. Assume a

discount rate of γ = 1.

T (s,Bus, s ′) =


ϵ if s ′ = n

1− ϵ if s ′ = s

0 otherwise

R(s,Bus, s ′) =


−1− α(n − s) if s ′ = n

−1 if s ′ = s
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VBus(s) = P[bus comes and we go to n](R(s,Bus, n) + γVBus(n))

+P[bus doesn’t come and we stay at s](R(s,Bus, s) + γVBus(s))

VBus(s) = ϵ(−1− α(n − s)) + (1− ϵ)(−1 + VBus(s))

= −α(n − s)− 1

ϵ



Finding Policy Value

For what values of ϵ (as a function of α and n) is it advantageous

to walk rather than take the bus?

VWalk(s) = −(n − s) VBus(s) = −α(n − s)− 1

ϵ

For walking to be preferable we need:

VWalk(s) ≥ VBus(s):

n − s ≤ α(n − s) +
1

ϵ

(1− α)(n − s) ≤ 1

ϵ

Which leads to: ϵ ≤ 1
(1−α)(n−s) α < 1

ϵ > 0 α ≥ 1
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Problem 1: MDP for Riding the Bus

Q-Learning



Q-Learning

Unfortunately, Sabina’s town is unable to provide transition

probabilities or a reward function (i.e. a bus schedule), making the

above MDP possibly (and likely) inaccurate. To get around this,

Sabina decides to use reinforcement learning, specifically

Q-learning to determine the best policy. Sabina starts going around

town both by bus and by walking, recording the following data:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5



Q-Learning

Run the Q-learning algorithm once over the given data to compute

an estimate of the optimal Q-value Qopt(s, a). Process the

episodes from left to right. Assume all Q-values are initialized to

zero, and use a learning rate of η = 0.5 and a discount of γ = 1.

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5



Q-Learning

Recall the Q-learning update:

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r + γ max
a′∈Action(s′)

Q̂opt(s
′, a′))

With η = 0.5 and γ = 1.

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Find Q̂(s, a) for s = 1, 2, 3, 4 and a ∈ {Bus,Walk}.



Q-Learning

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5

1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Q̂opt(s, a)←
1

2
Q̂opt(s, a) +

1

2
(r + max

a′∈Action(s′)
Q̂opt(s

′, a′))

Using the updates:

(1,Bus,−1, 1) :

Q̂(1,Bus) = 0.5(0) + 0.5(−1 + 1max(0, 0)) = −0.5

(1,Bus,−1, 1) :

Q̂(1,Bus) = 0.5(−0.5) + 0.5(−1 + 1(max(0,−0.5))) = −0.75

(1,Bus, 3, 3) :

Q̂(1,Bus) = 0.5(−0.75) + 0.5(3 + 1(max(0, 0))) = 1.125

(3,Walk, 1, 4) :

Q̂(3,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

(4,Walk, 1, 5) :

Q̂(4,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

All other Q̂(s, a) = 0.



Q-Learning
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Algorithms for MDPs

Model-Based Methods for MDPs



Unknown Transitions and Rewards: RL

Wouldn’t it be nice if life gave you transition probabilities and

rewards?

What if we only have:

• Starting state and possible states.

• Actions at each state.

• Termination state.

• Discount factor.

No transition probabilities and rewards.



Model-Based Value Iteration

As they say, when life gives you no transition or reward

function, make your own!

Estimate the missing parts of the MDP (transition and rewards) by

exploring the world and use value iteration to find the optimal

policy. Hence ‘model-based value iteration’.

T̂ (s, a, s ′) =
|(s, a, s ′)|
|(s, a)|

R̂(s, a, s ′) = r from (s, a, r , s ′)

Q̂opt(s, a) =
∑
s′

T̂ (s, a, s ′)
[
R̂(s, a, s ′) + γV̂opt(s

′)
]



Value Iteration

Q̂opt(s, a) =
∑
s′

T̂ (s, a, s ′)
[
R̂(s, a, s ′) + γV̂opt(s

′)
]

Vopt(s) =

0 if IsEnd(s)

maxa∈A(s)Qopt(s, a) otherwise



Model-Based Monte Carlo

How do we explore the space?

Can’t miss certain parts of the model (that deterministic π might).

Solution? Make sure we randomly explore the space, visiting states

infinitely often (in the limit).

Hence ‘Model-Based Monte Carlo’, randomly traverse the space.



Aside: On-Policy vs Off-Policy

Definition

On-Policy: estimate the value based on data generated by a

specific policy.

Definition

Off-Policy: estimate the optimal value based on data generated by

traversing the space.

Model-Based Monte Carlo? Off-Policy. We explore the space

arbitrarily to find the optimal policy.



Algorithms for MDPs

Model-Free Methods for MDPs



Model-Free Monte Carlo

In Model-Based Monte Carlo we estimated T̂ and R̂ and used

value iteration to compute Q̂opt. What if we just directly estimate

Q̂π(s, a)?

Model-Free Monte Carlo

Q̂π(st−1, at) should be the average of ut , with:

ut = rt + γrt+1 + γ2rt+2 + · · ·

So at (st−1, at) use the rest of the data to get ut .



Model-Free Monte Carlo



SARSA

Notice that reaching state-action pair (st−1, at) required

ut =
∑∞

i=0 γ
i rt+i , which is the sum until termination, just for a

single update. What if we updated every time we were at (s, a)?

SARSA For each tuple (s, a, r , s ′, a′) in the sequence of our

exploration (via π):

Q̂π(s, a)← (1− η)Q̂π(s, a) + η[r + γQ̂π(s
′, a′)]

Interpolate between observed data r and prediction.

Biased (using the estimate of Q̂π rather than just raw data), but

less variance.



SARSA vs Q-Learning



Exploration/Exploitation Trade-off

In Q-Learning we need some policy to generate data while we

estimate another policy (the optimal one). Does any policy work?

• Too greedy (always picking the best action) and we won’t

explore everywhere.

• Too much exploring and we learn too slowly.

Solution? ϵ-greedy policy:

πact(s) =

argmaxa∈A(s)Q̂opt(s, a) probability 1− ϵ

random action from A(s) probability ϵ

Can decay ϵ over time, guarantees we explore and learn.



Algorithms for MDPs

Summary



Reinforce Your Understanding

Off-policy algorithms that output the optimal Q-value, Qopt:

• Value Iteration: V
(t)
opt(s)← maxa∈A(s)Q

(t−1)
opt (s, a).

• Model-Based Value Iteration: Estimate T and R using

Monte Carlo, then value iteration using estimates T̂ and R̂.

• Q-Learning: Estimate Q̂opt(s, a) based on (i) the reward to

state s ′ and (ii) the estimated optimal max value of s ′.

On-policy algorithms that output the Q-value, Qπ, of a specific

policy:

• Policy Iteration: V
(t)
π (s)← Q

(t−1)
π (s, π(s)).

• Model-Free Monte Carlo: Estimate Q̂π(s, a) from the

utility, ut , along the path.

• SARSA: Estimate Q̂π(s, a) based on (i) the update

(s, a, r , s ′, a′) and (ii) the estimated Q̂π(s
′, a′).



Reinforce Your Understanding

Algorithm Outputs Based On

Model-Based Monte Carlo Q̂opt s0, a1, r1, s1, . . . =⇒ T̂ , R̂

Q-Learning Q̂opt (s, a, r , s ′), V̂opt(s
′)

Model-Free Monte Carlo Q̂π ut = rt + γrt+1 + γ2rt+2 + . . .

SARSA Q̂π (s, a, r , s ′, a′), Q̂π(s
′, a′)



Problem 2: Choosing an Algorithm

Problem 2: Choosing an Algorithm



Choosing an Algorithm

For each of the following questions, choose one or more of the

algorithm(s) below to solve the given problem.

• Model-Based Monte Carlo

• Q-Learning

• Model-Free Monte Carlo

• SARSA



Expensive Experiments

You work in a chemistry lab that is conducting some extremely

expensive experiments. Unfortunately, sometimes the actions you

take cause non-deterministic outcomes (due to unobservable

factors), and your chemical reaction transitions to a different state

randomly. Your team would like to figure out the best course of

action that’ll most likely finish the experiments without fail, but

you don’t have enough budget for lots of trials. Fortunately, the

number of states and possible actions are relatively small, and you

have detailed notes on data from many past experiments.

Model-Based Monte Carlo would let us simulate many strategies

(policies) using old and new data by generating T̂ and R̂ before

using Policy Iteration.
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Poker-Playing Roommates

Your roommate seems to win a lot of money playing poker against

their friends. Based on what you know about them, you’ve got

some ideas on what strategies you can use to possibly beat them.

But, you’re concerned that if you tailor your strategy to your

roommate’s specific playstyle, then you’ll lose to their friends in

the crossfire. You decide to build a poker bot to test your

strategies against random players online. You choose your reward

to be how much you win at the end of a round.

Model-Free Monte Carlo is a good choice since we only get a

reward at the end of a round (at a terminal state), meaning that

SARSA updates would be slower. Since we are testing specific

policies, we need an on-policy algorithm.
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some ideas on what strategies you can use to possibly beat them.

But, you’re concerned that if you tailor your strategy to your

roommate’s specific playstyle, then you’ll lose to their friends in

the crossfire. You decide to build a poker bot to test your

strategies against random players online. You choose your reward

to be how much you win at the end of a round.

Model-Free Monte Carlo is a good choice since we only get a

reward at the end of a round (at a terminal state), meaning that

SARSA updates would be slower. Since we are testing specific

policies, we need an on-policy algorithm.



Monte Catlo?

You decide to foster a cat from the local Humane Society.

Unfortunately, the cat is quite skittish and really likes the dark. As

such, he won’t get out from under your bed. You’ve assembled an

arsenal of treats, toys, and trinkets to try and lure him out. Some

things seem to pique his interest, but he won’t seem to come out.

You’re pretty sure that presenting him with the right order of items

at the right time of day might convince him to come out.

Q-Learning would work well here, since we’d like to learn an

optimal policy (get the cat out from under the bed), and have no

idea how he reacts to things. Alternatively, Model-Based Monte

Carlo.
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Bonus: Another MDP

Bonus: Another MDP



Car MDP

See problem 3 in the handout.
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