
CS221 Problem Workout
Week 5

Zero Sum Turn Based Games

2

● Zero Sum (Adversarial)
○ Only one player can win
○ One player loses by the amount

the other player wins
● Turn based

○ Only one player takes an action
at a time

Image Credit: Chess.com

http://chess.com

Game Tree

3

● In order to reason about games we
make a Game Tree

● Enumerate all the possible actions by
a given player on their turn

● Allows us to compute expected value
of the game based on players policies

Image Credit: USC

https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Tree

4

● Helps to represent players based on their
policy

● = Probabilistic

● = Maximizer

● = Minimizer

● It is important to consider that a minimizer
player is “maximizing” the opponent reward
(their reward) in a zero sum game!

0.5 0.5 0.2 0.8

Finding Optimal Policy

5

● We need to evaluate the expected utility of
each game state

● Depending on the game we can use:
○ Expectimax: Fixed Random Opponent
○ Minimax: Minimizer Opponent
○ Expectiminimax: Minimizer Opponent

with randomness in the game

Image Credit: UC Berkeley

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Finding Optimal Policy

6

● We need to evaluate the expected utility of
each game state

● Depending on the game we can use:
○ Expectimax: Fixed Random Opponent
○ Minimax: Minimizer Opponent
○ Expectiminimax: Minimizer Opponent

with randomness in the game

Image Credit: UC Berkeley

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Improve Efficiency: Evaluation Functions

7

● Sometimes we can’t possibly enumerate the whole search tree

● We can perform a depth limited search to a certain depth in the tree

● We can then define Eval(s) functions which take in a state and return a predicted
value of that state

Improve Efficiency: Alpha Beta Pruning

8

a_s: lower bound on the value that a max
node can contribute upwards
(increases with updates)

alpha_s: maximum a that we know of
from currNode to root

b_s: upper bound on the value that a
min node can contribute upwards
(decreases with updates)

beta_s: minimum b that we know of
from currNode to root

A max node only has a chance of being on the optimal path if a_s ≤ beta_s
- “My value will be at least a_s, my min ancestors will let through at most beta_s”

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!
- Exploring more children will only increase the max node’s value, which is already not

feasible through the min ancestors

Work this out for min nodes!

Improve Efficiency: Alpha Beta Pruning

9

6

6

5 6

8

8 7

2

2 1

4

3 4

6 2

10

11

12

13

Problem 1: General ML Review

Problem 1: General ML Review

“Linear Regression” with Feature Maps

Linear Classification Decision Boundaries

Loss Functions

Backpropagation

Reusing Derivatives

Regularization

Problem 1: General ML Review

“Linear Regression” with Feature Maps

“Linear Regression” with Feature Maps

We have a trained linear regression model fw(x) = w · �(x). In
your own words, explain why we call this model “linear”. Is it

linear in x? Linear in �(x)? Linear in w? Note that linearity for

some generic function g means that g(x + y) = g(x) + g(y) and

g(↵x) = ↵g(x) for all parameters ↵.

“Linear Regression” with Feature Maps

We have a trained linear regression model fw(x) = w · �(x). In
your own words, explain why we call this model “linear”. Is it

linear in x? Linear in �(x)? Linear in w? Note that linearity for

some generic function g means that g(x + y) = g(x) + g(y) and

g(↵x) = ↵g(x) for all parameters ↵.

• Is it linear in x? NO!

• Linear in �(x)? Yes

• Linear in w? Yes

“Linear Regression” with Feature Maps

We have a trained linear regression model fw(x) = w · �(x). In
your own words, explain why we call this model “linear”. Is it

linear in x? Linear in �(x)? Linear in w? Note that linearity for

some generic function g means that g(x + y) = g(x) + g(y) and

g(↵x) = ↵g(x) for all parameters ↵.

• Is it linear in x? NO!

• Linear in �(x)? Yes

• Linear in w? Yes

Key Takeaway: Feature maps let us express / model non-linear

functions within linear regression!

“Linear Regression” with Feature Maps

We have a trained linear regression model fw(x) = w · �(x).

• Is it linear in x? NO!

• Linear in �(x)? Yes

• Linear in w? Yes

Key Takeaway: Feature maps let us express non-linear functions

within linear classification models, e.g. quadratic features:

Problem 1: General ML Review

Linear Classification Decision Boundaries

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What is the decision boundary? What does w · �(x)y = �1000

imply about how well our model classified the point (x , y)? What

does w · �(x)y = 0.1 imply about how well our model classified the

point (x , y)?

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What is the decision boundary?

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What is the decision boundary?

Recall our definition: The decision boundary is w · �(x) = 0.

Key Takeaway: Decision boundaries let us separate data into

di↵erent groups!

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What does w · �(x)y = �1000 imply about how well our model

classified the point (x , y)?

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What does w · �(x)y = �1000 imply about how well our model

classified the point (x , y)?

Our model is confident in the classification (far from the decision

boundary), but incorrect in the classification (note the sign).

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What does w · �(x)y = 0.1 imply about how well our model

classified the point (x , y)?

Linear Classification Decision Boundaries

We are working with a classification model fw(x) = sign(w · �(x)).
What does w · �(x)y = 0.1 imply about how well our model

classified the point (x , y)?

Our model is not very confident in the classification (close to the

decision boundary), but correct in the classification (same signs).

Problem 1: General ML Review

Loss Functions

Loss Functions

Additionally, you consider using the following loss function

1[(w · �(x))y  0]

for gradient descent. Explain why using this loss function is a bad

idea.

Loss Functions

Additionally, you consider using the following loss function

1[(w · �(x))y  0]

for gradient descent. Explain why using this loss function is a bad

idea.

This is the zero-one loss function, which has zero gradient almost

everywhere!

Key Takeaway: We want our loss function to have a meaningful

gradient for gradient descent!

Loss Functions

After solving the prior problem, you realize the zero-one loss

function is a bad idea and instead decide to use the logistic loss

function. Your data is y 2 {0,+1}, so you define the logistic loss

as follows

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

where f has a range of [0, 1]. Before picking f , you’d like to

di↵erentiate L with respect to w. Is this possible, and if so, what is
@L
@w?

Loss Functions

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

Yes! We use the chain rule:

@L(x , y ;w)

@w
= �y

1

f (x ;w)

@f (x ;w)

@w
+ (1� y)

1

1� f (x ;w)

@f (x ;w)

@w

=

✓
f (x ;w)� y

f (x ;w)(1� f (x ;w))

◆
@f (x ;w)

@w

Key Takeaway: Be prepared to take derivatives of any loss

function!

Loss Functions

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

Yes! We use the chain rule:

@L(x , y ;w)

@w
= �y

1

f (x ;w)

@f (x ;w)

@w
+ (1� y)

1

1� f (x ;w)

@f (x ;w)

@w

=

✓
f (x ;w)� y

f (x ;w)(1� f (x ;w))

◆
@f (x ;w)

@w

(Food for thought: how would the derivative change if it were over

a summation?)

Loss Functions

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

Yes! We use the chain rule:

@L(x , y ;w)

@w
= �y

1

f (x ;w)

@f (x ;w)

@w
+ (1� y)

1

1� f (x ;w)

@f (x ;w)

@w

=

✓
f (x ;w)� y

f (x ;w)(1� f (x ;w))

◆
@f (x ;w)

@w

(Food for thought: how would the derivative change if it were over

a summation?)

Same process, just with indexing!

Loss Functions

For your function f in the above loss function, you can’t decide

between using the sigmoid function,

g(x ;w) =
1

1 + e�wT x

or the shifted tanh function,

h(x ;w) =
1

2
tanh(wT

x) +
1

2
with tanh(x) =

e
x � e

�x

ex + e�x

in place of f . How would the derivative from Part (c) look like

with function g above in place of f , and with function h above in

place of f ?

Loss Functions

Sigmoid function,

g(x ;w) =
1

1 + e�wT x

@g(x ;w)

@w
=

Loss Functions

Sigmoid function,

g(x ;w) =
1

1 + e�wT x

@g(x ;w)

@w
= �(1 + e

�w
T x)�2 @

@w

⇣
1 + e

�w
T x
⌘

=
xe

�w
T x

(1 + e�wT x)2
(this is a valid answer)

= x
1

(1 + e�wT x)

e
�w

T x

(1 + e�wT x)

= xg(x ;w)(1� g(x ;w))

Remember: �(w)(1� �(w))@w@x form to save time and work!

Loss Functions

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

@L(x , y ;w)

@w
=

✓
f (x ;w)� y

f (x ;w)(1� f (x ;w))

◆
@f (x ;w)

@w

For sigmoid g :

@L(x , y ;w)

@w
=

✓
g(x ;w)� y

g(x ;w)(1� g(x ;w))

◆
@g(x ;w)

@w

=

✓
g(x ;w)� y

g(x ;w)(1� g(x ;w))

◆
g(x ;w)(1� g(x ;w))x

= x(g(x ;w)� y)

Loss Functions

tanh function,

h(x ;w) =
1

2
tanh(wT

x) +
1

2
with tanh(x) =

e
x � e

�x

ex + e�x

@h(x ;w)

@w
=

1

2

@ tanh(wT
x)

@w

=
1

2

@

@w

(ew
T x � e

�w
T x)

(ewT x + e�wT x)

=
1

2

"
(ew

T x + e
�w

T x)

(ewT x + e�wT x)
� (ew

T x + e
�w

T x)2

(ewT x + e�wT x)2

#
x

=
1

2
(1� tanh(wT

x)2)x

Loss Functions

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

@L(x , y ;w)

@w
=

✓
f (x ;w)� y

f (x ;w)(1� f (x ;w))

◆
@f (x ;w)

@w

For tanh h:
@L(x , y ;w)

@w
=

✓
h(x ;w)� y

h(x ;w)(1� h(x ;w))

◆
@h(x ;w)

@w

=

h(x ;w)� y

1
2(tanh(w

T x) + 1)(1� 1
2(tanh(w

T x) + 1))

!
1

2
(1�tanh(wT

x)2)x

=

h(x ;w)� y

(tanh(wT x) + 1)12(1� tanh(wT x))

!
(1� tanh(wT

x)2)x

= 2x(h(x ;w)� y)

Problem 1: General ML Review

Backpropagation

Backpropagation

Explain why writing the derivative of the loss function in the form

of cx(f (x ;w)� y) is very convenient for backpropagation.

Backpropagation

Explain why writing the derivative of the loss function in the form

of cx(f (x ;w)� y) is very convenient for backpropagation.

Very straightforward arithmetic operations involving known values!

Key Takeaway: Backpropagation breaks down derivatives into a

simple structure for a computer to do!

Problem 1: General ML Review

Reusing Derivatives

Reusing Derivatives

Unfortunately your model has poor performance for both sigmoid

and tanh. You decide to make your model a neural network to

hopefully fix that.

Let

N(x ;A,B) = B max{Ax , 0} = z

The loss function is now:

L(x , y ;A,B ,w) = �y log(f (N(x ;A,B);w))�
(1� y) log(1� f (N(x ;A,B);w))

Can we we reuse our result from before for @L
@w ?

Reusing Derivatives

Let

N(x ;A,B) = B max{Ax , 0} = z

The loss function is now:

L(x , y ;A,B ,w) = �y log(f (N(x ;A,B);w))�
(1� y) log(1� f (N(x ;A,B);w))

Can we we reuse our result from before for @L
@w ?

Replace x with z = N(x ;A,B)!

We were di↵erentiating with respect to w, not x , so the process

doesn’t change! N is simply a constant in this context.

Key Takeaway: Be careful of what you’re di↵erentiating with

respect to!

Problem 1: General ML Review

Regularization

Regularization

Food for thought: suppose we figure that our model’s poor

performance was due to overfitting instead. Why might L2
regularization help, and how would it change our loss function?

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

Regularization

Food for thought: suppose we figure that our model’s poor

performance was due to overfitting instead. Why might L2
regularization help, and how would it change our loss function?

L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w))

Key Takeaway: L2 regularization penalizes our weights w when

we take a minimization:

min
w


L(x , y ;w) = �y log(f (x ;w))� (1� y) log(1� f (x ;w)) +

�

2
||w||22

�

Search Problem (from Week 3)

Search Problem (from Week 3)

Defining the Search Problem

Redefining for a Heuristic

Search Problem (from Week 3)

Defining the Search Problem

Defining the Search Problem

In 16th century England, there were a set of N + 1 cities

C = {0, 1, 2, . . . ,N}. Connecting these cities were a set of

bidirectional roads R : (i , j) 2 R means that there is a road between

city i and city j . Assume there is at most one road between any

pair of cities, and that all the cities are connected. If a road exists

between i and j , then it takes T (i , j) hours to go from i to j .

Romeo lives in city 0 and wants to travel along the roads to meet

Juliet, who lives in city N. They want to meet.

Search problems typically require a lot of reading... try to break it

down to the important parts.

Defining the Search Problem

Search problems typically require a lot of reading... try to break it

down to the important parts.

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

To reduce confusion, they will reconnect after each traveling a

road. For example, if Romeo travels from city 3 to city 5 in 10

hours at the same time that Juliet travels from city 9 to city 7 in 8

hours, then Juliet will wait 2 hours. Once they reconnect, they will

both traverse the next road (neither is allowed to remain in the

same city). Furthermore, they must meet in the end in a city, not

in the middle of a road. Assume it is always possible for them to

meet in a city.

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e.

Cost of (r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

States: s = (r , j) where r 2 C and j 2 C are the cities Romeo and

Juliet currently in

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

Actions((r , j)) = {(r 0, j 0) : (r , r 0) 2 R , (j , j 0) 2 R} corresponds to

both traveling to a connected city

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

Cost((r , j), (r 0, j 0)) = max(T (r , r 0),T (j , j 0)) is the maximum over

the two times

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

Succ((r , j), (r 0, j 0)) = (r 0, j 0): just the next pair of cities the two

end up at

Defining the Search Problem

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

IsGoal((r , j)) = 1[r = j] (whether the two are in the same city)

Search Problem (from Week 3)

Redefining for a Heuristic

Redefining for a Heuristic

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

Uniform Cost Search to compute M(i , k), the minimum time it

takes one person to travel from city i to city k for all pairs of cities

i , k 2 C .

Give a consistent A* heuristic for the search problem. Your

heuristic should take O(N) time to compute, assuming that

looking up M(i , k) takes O(1) time.

Redefining for a Heuristic

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

• UCS precompute M(i , k), minimum time to go from any city i

to any city k ; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?

Redefining for a Heuristic

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of

(r , j) ! (r 0, j 0) = max(T (r , r 0),T (j , j 0))

• UCS precompute M(i , k), minimum time to go from any city i

to any city k ; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?

Redefining for a Heuristic

• N + 1 cities C = {0, 1, 2, . . . ,N}
• R : (i , j) 2 R is a road between city i and j

• Only 1 road between any 2 cities

• T (i , j) hours to go along road from i to j

• Romeo starts at 0, Juliet starts at N

• Romeo and Juliet will only wait for the other to finish

traveling if they make it to the goal

• UCS precompute M(i , k), minimum time to go from any city i

to any city k ; takes O(1) to look up

Key Takeaway: How to relax the search problem to make use of

the additional info? Is there a contradiction anywhere in the

criteria?

Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if

they make it to the goal

h((r , j)) = min
c2C

max{M(r , c),M(j , c)}.

A* heuristic h(s) is consistent if

h(s)  Cost(s, a) + h(Succ(s, a)).

so the following needs to be true

minc2C max{M(r , c),M(j , c)} 

Cost((r , j), (r 0, j 0)) + min
c 02C

max{M(r 0, c 0),M(j 0, c 0)}

Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if

they make it to the goal

h((r , j)) = min
c2C

max{M(r , c),M(j , c)}.

A* heuristic h(s) is consistent if the following is true

minc2C max{M(r , c),M(j , c)} 

Cost((r , j), (r 0, j 0)) + min
c 02C

max{M(r 0, c 0),M(j 0, c 0)}

The cost on the right-hand side is the original cost function, which

has Romeo/Juliet wait at every stop. That makes the right-hand

side larger!

