CS221 Problem Workout

Week 5

Stanford University

Zero Sum Turn Based Games

- Zero Sum (Adversarial)
- Only one player can win
- One player loses by the amount the other player wins
- Turn based
- Only one player takes an action at a time

Image Credit: Chess.com

Game Tree

- In order to reason about games we make a Game Tree
- Enumerate all the possible actions by a given player on their turn
- Allows us to compute expected value of the game based on players policies

Image Credit: USC

Game Tree

- Helps to represent players based on their policy
- $\square=$ Probabilistic
- $\triangle=$ Maximizer
- $V=$ Minimizer

- It is important to consider that a minimizer player is "maximizing" the opponent reward (their reward) in a zero sum game!

Finding Optimal Policy

- We need to evaluate the expected utility of each game state
- Depending on the game we can use:
- Expectimax: Fixed Random Opponent
- Minimax: Minimizer Opponent
- Expectiminimax: Minimizer Opponent with randomness in the game

Image Credit: UC Berkelev

Finding Optimal Policy

- We need to evaluate the expected utility of each game state
- Depending on the game we can use:
- Expectimax: Fixed Random Opponent
- Minimax: Minimizer Opponent
- Expectiminimax: Minimizer Opponent with randomness in the game

Image Credit: UC Berkelev

Improve Efficiency: Evaluation Functions

- Sometimes we can't possibly enumerate the whole search tree
- We can perform a depth limited search to a certain depth in the tree
- We can then define Eval(s) functions which take in a state and return a predicted value of that state

```
\xample:chess
Eval(s)= material + mobility + king-safety + center-control
material = 10 100 (K- K'})+9(Q-\mp@subsup{Q}{}{\prime})+5(R-\mp@subsup{R}{}{\prime})
    3(B-\mp@subsup{B}{}{\prime}+N-N'N})+1(P-\mp@subsup{P}{}{\prime}
mobility = 0.1(num-legal-moves - num-legal-moves')
```


Improve Efficiency: Alpha Beta Pruning

a_s: lower bound on the value that a max node can contribute upwards (increases with updates)
alpha_s: maximum a that we know of from currNode to root
b_s: upper bound on the value that a min node can contribute upwards (decreases with updates)
beta_s: minimum b that we know of from currNode to root

A max node only has a chance of being on the optimal path if a_s \leq beta_s

- "My value will be at least a_s, my min ancestors will let through at most beta_s"

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!

- Exploring more children will only increase the max node's value, which is already not feasible through the min ancestors

Work this out for min nodes!

Improve Efficiency: Alpha Beta Pruning

2) "I am the Lorax who speaks for the [game] trees, which you seem to be [alpha-beta pruning] as fast as you please!" - The Lorax
(a) Evaluate the following game (Figure 1) where the edges are probabilities:

Figure 1

Pretend the top node is now a maximizing player. Under expectimax which action should they take (left, center, or right) and what is the value of the game.
(b) Evaluate the game in Figure 2 using the minimax strategies for both players, with $x=-5$. Recall that upwards pointing triangles is the maximizing player and downwards pointing is the minimizing player.

Figure 2

Can we pick x so that the maximizing player loses? Why or why not.
(c) Can either player do better by deviating from minimax assuming the other stays?
(d) Evaluate the game in Figure 3 under the expectiminimax strategy, using $x=-5$. Write down a funny answer for who the third player playing the circles is.

Figure 3
(e) In the previous problem, is there a value of x we can choose so that the game does not end in a draw?
(f) Assume that in the case of a tie in the value of multiple options, the maximizing player chooses the rightmost tied-value action. Still referring to (d) and Figure 3 with $x=-5$, explain, in your own words, why expectiminimax always chooses to draw the game given this choice of tie-breaking. Is there a better way of breaking ties?

Problem 1: General ML Review

Problem 1: General ML Review

"Linear Regression" with Feature Maps
Linear Classification Decision Boundaries
Loss Functions
Backpropagation
Reusing Derivatives

Regularization

Problem 1: General ML Review

"Linear Regression" with Feature Maps

"Linear Regression" with Feature Maps

We have a trained linear regression model $f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$. In your own words, explain why we call this model "linear". Is it linear in x ? Linear in $\phi(x)$? Linear in w? Note that linearity for some generic function g means that $g(x+y)=g(x)+g(y)$ and $g(\alpha x)=\alpha g(x)$ for all parameters α.

"Linear Regression" with Feature Maps

We have a trained linear regression model $f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$. In your own words, explain why we call this model "linear". Is it linear in x ? Linear in $\phi(x)$? Linear in w? Note that linearity for some generic function g means that $g(x+y)=g(x)+g(y)$ and $g(\alpha x)=\alpha g(x)$ for all parameters α.

- Is it linear in x ? NO!
- Linear in $\phi(x)$? Yes
- Linear in w? Yes

"Linear Regression" with Feature Maps

We have a trained linear regression model $f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$. In your own words, explain why we call this model "linear". Is it linear in x ? Linear in $\phi(x)$? Linear in \mathbf{w} ? Note that linearity for some generic function g means that $g(x+y)=g(x)+g(y)$ and $g(\alpha x)=\alpha g(x)$ for all parameters α.

- Is it linear in x ? NO!
- Linear in $\phi(x)$? Yes
- Linear in \mathbf{w} ? Yes

Key Takeaway: Feature maps let us express / model non-linear functions within linear regression!

"Linear Regression" with Feature Maps

We have a trained linear regression model $f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$.

- Is it linear in x ? NO!
- Linear in $\phi(x)$? Yes
- Linear in \mathbf{w} ? Yes

Key Takeaway: Feature maps let us express non-linear functions within linear classification models, e.g. quadratic features:

Problem 1: General ML Review

Linear Classification Decision Boundaries

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What is the decision boundary? What does $\mathbf{w} \cdot \phi(x) y=-1000$ imply about how well our model classified the point (x, y) ? What does $\boldsymbol{w} \cdot \phi(x) y=0.1$ imply about how well our model classified the point (x, y) ?

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What is the decision boundary?

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What is the decision boundary?

Recall our definition: The decision boundary is $w \cdot \phi(x)=0$.
Key Takeaway: Decision boundaries let us separate data into different groups!

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What does $\mathbf{w} \cdot \phi(x) y=-1000$ imply about how well our model classified the point (x, y) ?

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What does $\mathbf{w} \cdot \phi(x) y=-1000$ imply about how well our model classified the point (x, y) ?

Our model is confident in the classification (far from the decision boundary), but incorrect in the classification (note the sign).

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What does $\mathbf{w} \cdot \phi(x) y=0.1$ imply about how well our model classified the point (x, y) ?

Linear Classification Decision Boundaries

We are working with a classification model $f_{w}(x)=\operatorname{sign}(\mathbf{w} \cdot \phi(x))$. What does $\mathbf{w} \cdot \phi(x) y=0.1$ imply about how well our model classified the point (x, y) ?

Our model is not very confident in the classification (close to the decision boundary), but correct in the classification (same signs).

Problem 1: General ML Review

Loss Functions

Loss Functions

Additionally, you consider using the following loss function

$$
1[(\mathbf{w} \cdot \phi(x)) y \leq 0]
$$

for gradient descent. Explain why using this loss function is a bad idea.

Loss Functions

Additionally, you consider using the following loss function

$$
1[(\mathbf{w} \cdot \phi(x)) y \leq 0]
$$

for gradient descent. Explain why using this loss function is a bad idea.

> This is the zero-one loss function, which has zero gradient almost everywhere!

Key Takeaway: We want our loss function to have a meaningful gradient for gradient descent!

Loss Functions

After solving the prior problem, you realize the zero-one loss function is a bad idea and instead decide to use the logistic loss function. Your data is $y \in\{0,+1\}$, so you define the logistic loss as follows

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

where f has a range of $[0,1]$. Before picking f, you'd like to differentiate L with respect to \mathbf{w}. Is this possible, and if so, what is $\frac{\partial L}{\partial w}$?

Loss Functions

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

Yes! We use the chain rule:

$$
\begin{aligned}
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}} & =-y \frac{1}{f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}+(1-y) \frac{1}{1-f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}} \\
& =\left(\frac{f(x ; \mathbf{w})-y}{f(x ; \mathbf{w})(1-f(x ; \mathbf{w}))}\right) \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}
\end{aligned}
$$

Key Takeaway: Be prepared to take derivatives of any loss function!

Loss Functions

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

Yes! We use the chain rule:

$$
\begin{aligned}
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}} & =-y \frac{1}{f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}+(1-y) \frac{1}{1-f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}} \\
& =\left(\frac{f(x ; \mathbf{w})-y}{f(x ; \mathbf{w})(1-f(x ; \mathbf{w}))}\right) \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}
\end{aligned}
$$

(Food for thought: how would the derivative change if it were over a summation?)

Loss Functions

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

Yes! We use the chain rule:

$$
\begin{aligned}
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}} & =-y \frac{1}{f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}+(1-y) \frac{1}{1-f(x ; \mathbf{w})} \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}} \\
& =\left(\frac{f(x ; \mathbf{w})-y}{f(x ; \mathbf{w})(1-f(x ; \mathbf{w}))}\right) \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}
\end{aligned}
$$

(Food for thought: how would the derivative change if it were over a summation?)

Same process, just with indexing!

Loss Functions

For your function f in the above loss function, you can't decide between using the sigmoid function,

$$
g(x ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{T} x}}
$$

or the shifted tanh function,

$$
h(x ; \mathbf{w})=\frac{1}{2} \tanh \left(\mathbf{w}^{T} x\right)+\frac{1}{2} \quad \text { with } \quad \tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

in place of f. How would the derivative from Part (c) look like with function g above in place of f, and with function h above in place of f ?

Loss Functions

Sigmoid function,

$$
\begin{gathered}
g(x ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{T} x}} \\
\frac{\partial g(x ; \mathbf{w})}{\partial \mathbf{w}}=
\end{gathered}
$$

Loss Functions

Sigmoid function,

$$
\begin{aligned}
& g(x ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{\top} x}} \\
\frac{\partial g(x ; \mathbf{w})}{\partial \mathbf{w}}= & -\left(1+e^{-\mathbf{w}^{\top} x}\right)^{-2} \frac{\partial}{\partial \mathbf{w}}\left(1+e^{-\mathbf{w}^{\top} x}\right) \\
= & \frac{x e^{-\mathbf{w}^{\top} x}}{\left(1+e^{-\mathbf{w}^{\top} x}\right)^{2}} \quad(\text { this is a valid answer }) \\
= & x \frac{1}{\left(1+e^{-\mathbf{w}^{\top} x}\right)} \frac{e^{-\mathbf{w}^{\top} x}}{\left(1+e^{-\mathbf{w}^{\top} x}\right)} \\
= & x g(x ; \mathbf{w})(1-g(x ; \mathbf{w}))
\end{aligned}
$$

Remember: $\sigma(\mathbf{w})(1-\sigma(\mathbf{w})) \frac{\partial \mathbf{w}}{\partial x}$ form to save time and work!

Loss Functions

$$
\begin{gathered}
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w})) \\
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}}=\left(\frac{f(x ; \mathbf{w})-y}{f(x ; \mathbf{w})(1-f(x ; \mathbf{w}))}\right) \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}
\end{gathered}
$$

For sigmoid g :

$$
\begin{aligned}
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}} & =\left(\frac{g(x ; \mathbf{w})-y}{g(x ; \mathbf{w})(1-g(x ; \mathbf{w}))}\right) \frac{\partial g(x ; \mathbf{w})}{\partial \mathbf{w}} \\
& =\left(\frac{g(x ; \mathbf{w})-y}{g(x ; \mathbf{w})(1-g(x ; \mathbf{w}))}\right) g(x ; \mathbf{w})(1-g(x ; \mathbf{w})) x \\
& =x(g(x ; \mathbf{w})-y)
\end{aligned}
$$

Loss Functions

tanh function,

$$
\begin{aligned}
h(x ; \mathbf{w})=\frac{1}{2} & \tanh \left(\mathbf{w}^{\top} x\right)+\frac{1}{2} \quad \text { with } \quad \tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
\frac{\partial h(x ; \mathbf{w})}{\partial \mathbf{w}} & =\frac{1}{2} \frac{\partial \tanh \left(\mathbf{w}^{\top} x\right)}{\partial \mathbf{w}} \\
& =\frac{1}{2} \frac{\partial}{\partial w} \frac{\left(e^{w^{\top} x}-e^{-w^{\top} x}\right)}{\left(e^{w^{\top} x}+e^{-w^{\top} x}\right)} \\
& =\frac{1}{2}\left[\frac{\left(e^{w^{\top} x}+e^{-w^{\top} x}\right)}{\left(e^{\mathbf{w}^{\top} x}+e^{-\mathbf{w}^{\top} x}\right)}-\frac{\left(e^{w^{\top} x}+e^{-w^{\top} x}\right)^{2}}{\left(e^{\mathbf{w}^{\top} x}+e^{-\mathbf{w}^{\top} x}\right)^{2}}\right] x \\
& =\frac{1}{2}\left(1-\tanh \left(\mathbf{w}^{\top} x\right)^{2}\right) x
\end{aligned}
$$

Loss Functions

$$
\begin{gathered}
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w})) \\
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}}=\left(\frac{f(x ; \mathbf{w})-y}{f(x ; \mathbf{w})(1-f(x ; \mathbf{w}))}\right) \frac{\partial f(x ; \mathbf{w})}{\partial \mathbf{w}}
\end{gathered}
$$

For tanh h :

$$
\begin{gathered}
\frac{\partial L(x, y ; \mathbf{w})}{\partial \mathbf{w}}=\left(\frac{h(x ; \mathbf{w})-y}{h(x ; \mathbf{w})(1-h(x ; \mathbf{w}))}\right) \frac{\partial h(x ; \mathbf{w})}{\partial \mathbf{w}} \\
=\left(\frac{h(x ; \mathbf{w})-y}{\frac{1}{2}\left(\tanh \left(\mathbf{w}^{T} x\right)+1\right)\left(1-\frac{1}{2}\left(\tanh \left(\mathbf{w}^{T} x\right)+1\right)\right)}\right) \frac{1}{2}\left(1-\tanh \left(\mathbf{w}^{T} x\right)^{2}\right) x \\
=\left(\frac{h(x ; \mathbf{w})-y}{\left(\tanh \left(\mathbf{w}^{T} x\right)+1\right) \frac{1}{2}\left(1-\tanh \left(\mathbf{w}^{T} x\right)\right)}\right)\left(1-\tanh \left(\mathbf{w}^{T} x\right)^{2}\right) x \\
=2 x(h(x ; \mathbf{w})-y)
\end{gathered}
$$

Problem 1: General ML Review

Backpropagation

Backpropagation

Explain why writing the derivative of the loss function in the form of $c x(f(x ; \mathbf{w})-y)$ is very convenient for backpropagation.

Backpropagation

Explain why writing the derivative of the loss function in the form of $c x(f(x ; \mathbf{w})-y)$ is very convenient for backpropagation.

Very straightforward arithmetic operations involving known values! Key Takeaway: Backpropagation breaks down derivatives into a simple structure for a computer to do!

Problem 1: General ML Review

Reusing Derivatives

Reusing Derivatives

Unfortunately your model has poor performance for both sigmoid and \tanh. You decide to make your model a neural network to hopefully fix that.

Let

$$
N(x ; A, B)=B \max \{A x, 0\}=z
$$

The loss function is now:

$$
\begin{aligned}
L(x, y ; A, B, \mathbf{w}) & =-y \log (f(N(x ; A, B) ; \mathbf{w}))- \\
& (1-y) \log (1-f(N(x ; A, B) ; \mathbf{w}))
\end{aligned}
$$

Can we we reuse our result from before for $\frac{\partial L}{\partial w}$?

Reusing Derivatives

Let

$$
N(x ; A, B)=B \max \{A x, 0\}=z
$$

The loss function is now:

$$
\begin{aligned}
L(x, y ; A, B, \mathbf{w}) & =-y \log (f(N(x ; A, B) ; \mathbf{w}))- \\
& (1-y) \log (1-f(N(x ; A, B) ; \mathbf{w}))
\end{aligned}
$$

Can we we reuse our result from before for $\frac{\partial L}{\partial w}$?
Replace x with $z=N(x ; A, B)$!
We were differentiating with respect to \mathbf{w}, not x, so the process doesn't change! N is simply a constant in this context.

Key Takeaway: Be careful of what you're differentiating with respect to!

Problem 1: General ML Review

Regularization

Regularization

Food for thought: suppose we figure that our model's poor performance was due to overfitting instead. Why might L_{2} regularization help, and how would it change our loss function?

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

Regularization

Food for thought: suppose we figure that our model's poor performance was due to overfitting instead. Why might L_{2} regularization help, and how would it change our loss function?

$$
L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))
$$

Key Takeaway: L_{2} regularization penalizes our weights w when we take a minimization:

$$
\min _{\mathbf{w}}\left[L(x, y ; \mathbf{w})=-y \log (f(x ; \mathbf{w}))-(1-y) \log (1-f(x ; \mathbf{w}))+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}\right]
$$

Search Problem (from Week 3)

Search Problem (from Week 3)
Defining the Search Problem
Redefining for a Heuristic

Search Problem (from Week 3)

Defining the Search Problem

Defining the Search Problem

In 16th century England, there were a set of $N+1$ cities $C=\{0,1,2, \ldots, N\}$. Connecting these cities were a set of bidirectional roads $R:(i, j) \in R$ means that there is a road between city i and city j. Assume there is at most one road between any pair of cities, and that all the cities are connected. If a road exists between i and j, then it takes $T(i, j)$ hours to go from i to j.

Romeo lives in city 0 and wants to travel along the roads to meet Juliet, who lives in city N. They want to meet.

Search problems typically require a lot of reading... try to break it down to the important parts.

Defining the Search Problem

Search problems typically require a lot of reading... try to break it down to the important parts.

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N

To reduce confusion, they will reconnect after each traveling a road. For example, if Romeo travels from city 3 to city 5 in 10 hours at the same time that Juliet travels from city 9 to city 7 in 8 hours, then Juliet will wait 2 hours. Once they reconnect, they will both traverse the next road (neither is allowed to remain in the same city). Furthermore, they must meet in the end in a city, not in the middle of a road. Assume it is always possible for them to meet in a city.

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e.
Cost of $(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)$

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

States: $s=(r, j)$ where $r \in C$ and $j \in C$ are the cities Romeo and Juliet currently in

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

Actions $((r, j))=\left\{\left(r^{\prime}, j^{\prime}\right):\left(r, r^{\prime}\right) \in R,\left(j, j^{\prime}\right) \in R\right\}$ corresponds to both traveling to a connected city

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

$\operatorname{Cost}\left((r, j),\left(r^{\prime}, j^{\prime}\right)\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)$ is the maximum over the two times

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

$\operatorname{Succ}\left((r, j),\left(r^{\prime}, j^{\prime}\right)\right)=\left(r^{\prime}, j^{\prime}\right)$: just the next pair of cities the two end up at

Defining the Search Problem

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0, Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

IsGoal $((r, j))=1[r=j]$ (whether the two are in the same city)

Search Problem (from Week 3)

Redefining for a Heuristic

Redefining for a Heuristic

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of

$$
(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)
$$

Uniform Cost Search to compute $M(i, k)$, the minimum time it takes one person to travel from city i to city k for all pairs of cities $i, k \in C$.
Give a consistent A* heuristic for the search problem. Your heuristic should take $O(N)$ time to compute, assuming that looking up $M(i, k)$ takes $O(1)$ time.

Redefining for a Heuristic

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of
$(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)$
- UCS precompute $M(i, k)$, minimum time to go from any city i to any city k; takes $O(1)$ to look up

How to relax the search problem to make use of the additional info? Is there a contradiction anywhere in the criteria?

Redefining for a Heuristic

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will wait for the other to finish traveling before moving again, i.e. Cost of $(r, j) \rightarrow\left(r^{\prime}, j^{\prime}\right)=\max \left(T\left(r, r^{\prime}\right), T\left(j, j^{\prime}\right)\right)$
- UCS precompute $M(i, k)$, minimum time to go from any city i to any city k; takes $O(1)$ to look up

How to relax the search problem to make use of the additional info? Is there a contradiction anywhere in the criteria?

Redefining for a Heuristic

- $N+1$ cities $C=\{0,1,2, \ldots, N\}$
- $R:(i, j) \in R$ is a road between city i and j
- Only 1 road between any 2 cities
- $T(i, j)$ hours to go along road from i to j
- Romeo starts at 0 , Juliet starts at N
- Romeo and Juliet will only wait for the other to finish traveling if they make it to the goal
- UCS precompute $M(i, k)$, minimum time to go from any city i to any city k; takes $O(1)$ to look up

Key Takeaway: How to relax the search problem to make use of the additional info? Is there a contradiction anywhere in the criteria?

Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if they make it to the goal

$$
h((r, j))=\min _{c \in C} \max \{M(r, c), M(j, c)\}
$$

A* heuristic $h(s)$ is consistent if

$$
h(s) \leq \operatorname{Cost}(s, a)+h(\operatorname{Succ}(s, a))
$$

so the following needs to be true
$\min _{c \in C} \max \{M(r, c), M(j, c)\} \leq$

$$
\operatorname{Cost}\left((r, j),\left(r^{\prime}, j^{\prime}\right)\right)+\min _{c^{\prime} \in C} \max \left\{M\left(r^{\prime}, c^{\prime}\right), M\left(j^{\prime}, c^{\prime}\right)\right\}
$$

Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if they make it to the goal

$$
h((r, j))=\min _{c \in C} \max \{M(r, c), M(j, c)\}
$$

A* heuristic $h(s)$ is consistent if the following is true $\min _{c \in C} \max \{M(r, c), M(j, c)\} \leq$

$$
\operatorname{Cost}\left((r, j),\left(r^{\prime}, j^{\prime}\right)\right)+\min _{c^{\prime} \in C} \max \left\{M\left(r^{\prime}, c^{\prime}\right), M\left(j^{\prime}, c^{\prime}\right)\right\}
$$

The cost on the right-hand side is the original cost function, which has Romeo/Juliet wait at every stop. That makes the right-hand side larger!

