CS221 Problem Workout

Week 5

Stanford University



Zero Sum Turn Based Games

® Zero Sum (Adversarial)
o  Only one player can win
o One player loses by the amount
the other player wins
® Turn based
o Only one player takes an action
at a time

Image Credit: Chess.com

Stanford University


http://chess.com

Game Tree

® |n order to reason about games we
make a Game Tree

® Enumerate all the possible actions by
a given player on their turn

® Allows us to compute expected value
of the game based on players policies

\
/

o™

2

S ob\
;%/
°%_%\%
) %/ XX
Q%_%\am
_%_%/

Image Credit: USC

Stanford University


https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Tree

® Helps to represent players based on their
policy

° O = Probabilistic
° A = Maximizer

° v = Minimizer

e Itisimportant to consider that a minimizer
player is “maximizing” the opponent reward
(their reward) in a zero sum game!

0.5

0.5

0.2

Stanford University



Finding Optimal Policy

® We need to evaluate the expected utility of
each game state

e Depending on the game we can use:
o Expectimax: Fixed Random Opponent
©  Minimax: Minimizer Opponent
o Expectiminimax: Minimizer Opponent
with randomness in the game

Stanford University

s .

AN

Lh ol SR SRR

Fiol Fel [Seel B=

Image Credit: UC Berkeley


https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Finding Optimal Policy

® We need to evaluate the expected utility of
each game state

e Depending on the game we can use:
o Expectimax: Fixed Random Opponent
©  Minimax: Minimizer Opponent
O Expectiminimax: Minimizer Opponent
with randomness in the game

Stanford University

= h

AN N

AN

00| |

\RARAY

Image Credit: UC Berkeley


https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Improve Efficiency: Evaluation Functions

® Sometimes we can’t possibly enumerate the whole search tree
® We can perform a depth limited search to a certain depth in the tree

® \We can then define Eval(s) functions which take in a state and return a predicted
value of that state

Eval(s) = material + mobility + king-safety + center-control

material = 10'°(K — K')+9(Q — Q') +5(R— R') +
3(B—B' +N—-N')+1(P-P)

mobility = 0.1(num-legal-moves — num-legal-moves')

Stanford University



Improve Efficiency: Alpha Beta Pruning

a_s: lower bound on the value that a max b_s: upper bound on the value that a
node can contribute upwards min node can contribute upwards
(increases with updates) (decreases with updates)

alpha_s: maximum a that we know of beta_s: minimum b that we know of
from currNode to root from currNode to root

A max node only has a chance of being on the optimal path if a_s < beta_s
- “My value will be at least a_s, my min ancestors will let through at most beta_s”

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!
- Exploring more children will only increase the max node’s value, which is already not
feasible through the min ancestors

Work this out for min nodes!

Stanford University



Improve Efficiency: Alpha Beta Pruning

Stanford University



2) “I am the Lorax who speaks for the [game] trees, which you seem to be
[alpha-beta pruning] as fast as you please!” - The Lorax

(a) Evaluate the following game (Figure 1) where the edges are probabilities:

Pretend the top node is now a maximizing player. Under expectimax which action
should they take (left, center, or right) and what is the value of the game.

Stanford University 10



(b) Evaluate the game in Figure 2 using the minimax strategies for both players,
with £ = —5. Recall that upwards pointing triangles is the maximizing player
and downwards pointing is the minimizing player.

Can we pick z so that the maximizing player loses? Why or why not.

(c) Can either player do better by deviating from minimax assuming the other stays?

Stanford University 1



(d) Evaluate the game in Figure 3 under the expectiminimax strategy, using x = —5.
Write down a funny answer for who the third player playing the circles is.

/ \
() (3 (

(0.8) (0.2) (0.5) (0.5) (0.2) (0.8)

Figure 3

Stanford University



(e) In the previous problem, is there a value of z we can choose so that the game
does not end in a draw?

(f) Assume that in the case of a tie in the value of multiple options, the maximizing
player chooses the rightmost tied-value action. Still referring to (d) and Figure 3

with x = —5, explain, in your own words, why expectiminimax always chooses to
draw the game given this choice of tie-breaking. Is there a better way of breaking
ties?

Stanford University 13



Problem 1: General ML Review

Problem 1: General ML Review
“Linear Regression” with Feature Maps
Linear Classification Decision Boundaries
Loss Functions
Backpropagation
Reusing Derivatives

Regularization



Problem 1: General ML Review

“Linear Regression” with Feature Maps



“Linear Regression” with Feature Maps

We have a trained linear regression model f(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.



“Linear Regression” with Feature Maps

We have a trained linear regression model f(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.

e Is it linear in x? NO!
e Linear in ¢(x)? Yes

e Linear in w? Yes



“Linear Regression” with Feature Maps

We have a trained linear regression model f(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.

e Is it linear in x? NO!
e Linear in ¢(x)? Yes
e Linear in w? Yes

Key Takeaway: Feature maps let us express / model non-linear

functions within linear regression!



“Linear Regression” with Feature Maps

We have a trained linear regression model f(x) = w - ¢(x).

e Is it linear in x? NO!
e Linear in ¢(x)? Yes
e Linear in w? Yes

Key Takeaway: Feature maps let us express non-linear functions
within linear classification models, e.g. quadratic features:

T2




Problem 1: General ML Review

Linear Classification Decision Boundaries



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary? What does w - ¢(x)y = —1000
imply about how well our model classified the point (x,y)? What
does w - ¢(x)y = 0.1 imply about how well our model classified the
point (x,y)?



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary?



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary?

3

2

xI9
=)

Recall our definition: The decision boundary is w - ¢(x) = 0.
Key Takeaway: Decision boundaries let us separate data into

different groups!



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = —1000 imply about how well our model
classified the point (x,y)?



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = —1000 imply about how well our model
classified the point (x,y)?

3

2

€2
o

I

Our model is confident in the classification (far from the decision
boundary), but incorrect in the classification (note the sign).



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = 0.1 imply about how well our model
classified the point (x,y)?



Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = 0.1 imply about how well our model

classified the point (x,y)?

€2
o

I

Our model is not very confident in the classification (close to the
decision boundary), but correct in the classification (same signs).



Problem 1: General ML Review

Loss Functions



Loss Functions

Additionally, you consider using the following loss function

1[(w - ¢(x))y < 0]

for gradient descent. Explain why using this loss function is a bad
idea.



Loss Functions

Additionally, you consider using the following loss function

1[(w - ¢(x))y < 0]

for gradient descent. Explain why using this loss function is a bad
idea.

This is the zero-one loss function, which has zero gradient almost

everywherel!

Key Takeaway: We want our loss function to have a meaningful
gradient for gradient descent!



Loss Functions

After solving the prior problem, you realize the zero-one loss
function is a bad idea and instead decide to use the logistic loss
function. Your data is y € {0,+1}, so you define the logistic loss
as follows

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))

where f has a range of [0, 1]. Before picking f, you'd like to

differentiate L with respect to w. Is this possible, and if so, what is
AL
ow *



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

Yes! We use the chain rule:

OL(x,y;w) 1 Of(x;w) 1 Of (x; w)
ow 77yf(x;w) ow Jr(:liy)l—lf(x;w) ow

- ( fx;w)—y > Of (x; w)
f(x;w)(1—f(x;w)) ow

Key Takeaway: Be prepared to take derivatives of any loss

function!



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

Yes! We use the chain rule:

(')L(f).vil/; w) -~ f(Xl;W) (‘)ff;(v\;lw) L(1—y) 1 Of (x; w)
- ( fx;w)—y > Of (x; w)
fOw)(1— f(x;w))

(Food for thought: how would the derivative change if it were over
a summation?)



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

Yes! We use the chain rule:
IL(x,y;w) 1 0f(x;w) 1 Of (x; w)
ow f(x;w) Ow 1—f(x;w) Ow

- ( fx;w)—y > Of (x; w)
fOw)(1— f(x;w)) ow

+(1-y)

(Food for thought: how would the derivative change if it were over

a summation?)

Same process, just with indexing!



Loss Functions

For your function f in the above loss function, you can’t decide
between using the sigmoid function,

1

glxiw) = 1 rewix

or the shifted tanh function,
e —e X

1 1
h(x; w) = Etanh(WTX) To with  tanh(x) = E—

in place of f. How would the derivative from Part (c) look like
with function g above in place of f, and with function h above in

place of 7



Loss Functions

Sigmoid function,



Loss Functions

Sigmoid function,
1

glxiw) = 14 ewix

()gKX;W) (1+efw x) 2 0 (1+efw’x>

ow ow
T
xe W X . .
— m (this is a valid answer)
+ e~
1 e w'x

A+ e ™) (1+e ")
=xg(x;w)(1 — g(x; w))

Remember: o(w)(1 — a(w))g—‘)"(’ form to save time and work!



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

OL(x,y;,w) ( fx;w)—y ) Of (x; w)
ow fx;w)(1—f(x;w)) ow

For sigmoid g:

IL(x, y;w) < glxiw) —y )(')g(x;W)
(

ow gix;w)(1 — g(x;w)) ow
glx;w) —y
gx;w)(1 — g(x;w))
x(g(x;w) — )

)g<x; w)(L— g(x; w))x



Loss Functions

tanh function,

e — e X

1 1
h(x;w) = Etanh(wa) +3 with  tanh(x) = P

Oh(x; w) 1 (')tanh(wa)

ow 2 ow
19 (eW'x—e W)

2()W(6WTX+€ WTX)

1 (ewa + efWTX) (ewa 4 efwa)Q
5 (ew’x+efw’x) o (eW,XJre*W/X)Q X

1
= 5(1 — tanh(wa)z)x



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))
OL(x,y;,w) fx;w)—y Of (x; w)
~( )

ow x;w)(1 = f(x;w)) ow
For tanh h:
OL(x,y;w) B < h(x;w) —y ) dh(x; w)
ow h(x; w)(1 — h(x; w)) ow
_ h(x;w) —y 1
— (%(tanh(wTX) +1)(1 - %(tanh(WTX) + 1))> E(lftanh(wTX)2)x
h(x;w) —y
— ((tanh(WTX) + 1)%( o tanh(wTX))> (1- tanh(WTX)2)X



Problem 1: General ML Review

Backpropagation



Backpropagation

Explain why writing the derivative of the loss function in the form
of ex(f(x;w) — y) is very convenient for backpropagation.



Backpropagation

Explain why writing the derivative of the loss function in the form
of ex(f(x;w) — y) is very convenient for backpropagation.

Very straightforward arithmetic operations involving known values!
Key Takeaway: Backpropagation breaks down derivatives into a

simple structure for a computer to do!



Problem 1: General ML Review

Reusing Derivatives



Reusing Derivatives

Unfortunately your model has poor performance for both sigmoid
and tanh. You decide to make your model a neural network to
hopefully fix that.

Let
N(x; A, B) = Bmax{Ax,0} = z

The loss function is now:

L(x,y; A, B,w) = —ylog(f(N(x; A, B);w))—
(1—y)log(l = f(N(x; A, B);w))

Can we we reuse our result from before for gTLv?



Reusing Derivatives

Let
N(x; A, B) = Bmax{Ax,0} = z

The loss function is now:
L(x,y; A, B,w) = —ylog(f(N(x; A, B); w))—
(1—y)log(1l —f(N(x; A B);w))

Can we we reuse our result from before for c%?

Replace x with z = N(x; A, B)!
We were differentiating with respect to w, not x, so the process

doesn’t change! N is simply a constant in this context.

Key Takeaway: Be careful of what you're differentiating with
respect to!



Problem 1: General ML Review

Regularization



Regularization

Food for thought: suppose we figure that our model’s poor
performance was due to overfitting instead. Why might L
regularization help, and how would it change our loss function?

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))



Regularization

Food for thought: suppose we figure that our model’s poor
performance was due to overfitting instead. Why might L
regularization help, and how would it change our loss function?

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))

Key Takeaway: [, regularization penalizes our weights w when

we take a minimization:

min | L(x, y:w) = —y log(f(x; w) — (1~ y)log(1 — (3 w)) + 5 w3



Search Problem (from Week 3)

Search Problem (from Week 3)
Defining the Search Problem

Redefining for a Heuristic



Search Problem (from Week 3)

Defining the Search Problem



Defining the Search Problem

In 16th century England, there were a set of N + 1 cities

C ={0,1,2,...,N}. Connecting these cities were a set of
bidirectional roads R: (i, ) € R means that there is a road between
city i and city j. Assume there is at most one road between any
pair of cities, and that all the cities are connected. If a road exists
between i and j, then it takes T(i/,j) hours to go from i to j.

Romeo lives in city 0 and wants to travel along the roads to meet
Juliet, who lives in city N. They want to meet.

Search problems typically require a lot of reading... try to break it

down to the important parts.



Defining the Search Problem

Search problems typically require a lot of reading... try to break it

down to the important parts.

e N+ 1cities C=1{0,1,2,..., N}

e R: (i,j) € Ris a road between city / and j
e Only 1 road between any 2 cities

e T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at V



Defining the Search Problem

N + 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at V

To reduce confusion, they will reconnect after each traveling a
road. For example, if Romeo travels from city 3 to city 5 in 10
hours at the same time that Juliet travels from city 9 to city 7 in 8
hours, then Juliet will wait 2 hours. Once they reconnect, they will
both traverse the next road (neither is allowed to remain in the
same city). Furthermore, they must meet in the end in a city, not
in the middle of a road. Assume it is always possible for them to
meet in a city.



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}

e R: (i,j) € R is a road between city i and j
e Only 1 road between any 2 cities

e T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e.
Cost of (r,j) — (r',j") = max(T(r,r"), T(j, "))



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r,r"), T(j,J"))

States: s = (r,j) where r € C and j € C are the cities Romeo and

Juliet currently in



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r,r"), T(j,J"))

Actions((r,j)) = {(r".J") : (r,r") € R,(j,j') € R} corresponds to
both traveling to a connected city



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r,r"), T(j,J"))

Cost((r,j), (r',j")) = max(T(r,r"), T(j,J')) is the maximum over
the two times



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r,r"), T(j,J"))

Succ((r,j),(r',j")) = (r',j'): just the next pair of cities the two
end up at



Defining the Search Problem

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r,r"), T(j,J"))

IsGoal((r,j)) = 1[r = j] (whether the two are in the same city)



Search Problem (from Week 3)

Redefining for a Heuristic



Redefining for a Heuristic

e N+ 1 cities C ={0,1,2,..., N}
e R: (i,j) € R is a road between city i and j
e Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of
(r.g) = (r',j") = max(T(r.r'), T(j,j"))

Uniform Cost Search to compute M(i, k), the minimum time it
takes one person to travel from city i to city k for all pairs of cities
i,k eC.

Give a consistent A* heuristic for the search problem. Your
heuristic should take O(N) time to compute, assuming that
looking up M(i, k) takes O(1) time.



Redefining for a Heuristic

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

e Only 1 road between any 2 cities
e T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of
(r.j) = (r',J') = max(T(r,r"), T(j,J))

e UCS precompute M(i, k), minimum time to go from any city /

to any city k; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?



Redefining for a Heuristic

e N+ 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

e UCS precompute M(i, k), minimum time to go from any city /

to any city k; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?



Redefining for a Heuristic

N + 1 cities C = {0,1,2,..., N}

R: (i,j) € R is a road between city / and j

Only 1 road between any 2 cities

T(i,J) hours to go along road from i to j

Romeo starts at 0, Juliet starts at N

Romeo and Juliet will only wait for the other to finish
traveling if they make it to the goal

UCS precompute M(i, k), minimum time to go from any city i
to any city k; takes O(1) to look up

Key Takeaway: How to relax the search problem to make use of

the additional info? Is there a contradiction anywhere in the

criteria?



Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if

they make it to the goal
h((r,j)) = g”g(r'] max{M(r, c), M(j, c)}.
A* heuristic h(s) is consistent if
h(s) < Cost(s, a) + h(Succ(s, a)).
so the following needs to be true
mincec max{M(r,c), M(j,c)} <

Cost((r,4), (r',j") + mir& max{M(r', "), M(j’, c')}
c'e



Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if

they make it to the goal
h((r,j)) = g”g(r'] max{M(r, c), M(j, c)}.
A* heuristic h(s) is consistent if the following is true
mincec max{M(r,c), M(j, c)} <
Cost((r,j), (r',j")) + Cn,neng max{M(r', "), M(j’, )}
The cost on the right-hand side is the original cost function, which

has Romeo/Juliet wait at every stop. That makes the right-hand
side larger!



