
Constraint Satisfaction Problem

(CSP) Review

Constraint Satisfaction Problem

(CSP) Review

Defining CSPs

1/53

Variable-Based Models

Search, MDPs, and games are state-based models. CSPs are

variable-based models. Think in terms of variables (xi), factors

(fi), and weights.

x1 x2 x3

f1 f2 f3 f4

Solution to problems are assignments to variables. Use inference to

make decisions (algorithms do more work now, compare to search

where states did work).

2/53

Factor Graphs

Definition
Factor Graph

• Variables: X = (X1, . . . ,Xn) where Xi ∈ Domaini

• Factors: f1, . . . , fm, with each fj(X) ≥ 0.

• How good is assignment X

x1 x2 x3

f1 f2 f3 f4

• Scope of factor fj : set of variables it depends on.

• Arity of fj : number of variables in scope.

• Unary (1 variables); Binary (2 variables)

• Constraints: factors that return 0 or 1.
3/53

Assignment Weights

Definition
Assignment Weight: Every assignment x = (x1, . . . , xn) has

weight

Weight(x) =
m∏
j=1

fj(x)

• Consistent if Weight(x) > 0.

• A CSP is satisfiable if maxx Weight(x) > 0.

Objective: Find the maximum weight assignment:

argmaxxWeight(x)

4/53

Test Your Understanding

If a CSP has an assignment x̂ such that Weight(x̂) = 5, is the CSP

satisfiable? Recall that a CSP is satisfiable if

max
x

Weight(x) > 0

Yes, x̂ implies that the weight of the maximizing x is greater than

zero.

5/53

Test Your Understanding

If a CSP has an assignment x̂ such that Weight(x̂) = 5, is the CSP

satisfiable? Recall that a CSP is satisfiable if

max
x

Weight(x) > 0

Yes, x̂ implies that the weight of the maximizing x is greater than

zero.

5/53

Test Your Understanding

If a CSP has a factor f̂ (x) = 0 for all x , is the CSP satisfiable?

No, the weight is the product of all factors and f̂ is always zero.

Hence the weight will always be zero.

6/53

Test Your Understanding

If a CSP has a factor f̂ (x) = 0 for all x , is the CSP satisfiable?

No, the weight is the product of all factors and f̂ is always zero.

Hence the weight will always be zero.

6/53

Constraint Satisfaction Problem

(CSP) Review

Solving CSPs

7/53

Dependent Factors

Definition
Dependent Factors: D(x ,Xi) is the set of factors depending on

Xi (a single variable) and x (partial assignment) but not on

unassigned variables.

• If you have assigned x1 and x2 in x , then D(x ,X3) will be all
factors that depend on x3 and one/both of x1 and x2.

• i.e. if we want to assign x3 next, what constraints (factors) are

relevant?

• Idea: choose x3 to satisfy all factors in D(x ,X3)!

8/53

Backtracking Search

Backtrack(x ,w ,Domains):

• If x is completely assigned, check if best and return.

• Choose unassigned variable Xi (component in x)

• Order Domaini (corresponds to chosen Xi)

• For each v ∈ Domaini :

• Compute value of newly resolvable factors, setting xi = v :

δ =
∏

fj∈D(x,Xi)

fj(x ∪ {Xi : v})

• If δ = 0? Continue (at least one factor not satisfied).

• (Optional) Shrink domain to Domains′ (Lookahead).

• If any Domains′i is empty, continue.

• Backtrack(x ∪ {Xi : v},wδ,Domains′)

9/53

Lookahead

Forward Checking (One-Step Lookahead)

• We consider an assignment for variable Xi .

• We can remove any values from neighbors of Xi that would
violate factors. If any of these neighboring domains become
empty, no solution, can skip this assignment.

• Note that these ‘neighbors’ are only Xj that are not assigned in

x .

Example: x1, x2, and x3. Domain is {−1, 0, 1}. Constraints
f (x) = x1x2 = −1. See that choosing x1 = 0 leads to an empty

lookahead domain for x2.

10/53

Backtracking Search

Backtrack(x ,w ,Domains):

• If x is completely assigned, check if best and return.

• Choose unassigned variable Xi (component in x)

• Order Domaini (corresponds to chosen Xi)

• For each v ∈ Domaini :

• Compute value of newly resolvable factors, setting xi = v :

δ =
∏

fj∈D(x,Xi)

fj(x ∪ {Xi : v})

• If δ = 0? Continue (at least one factor not satisfied).

• (Optional) Shrink domain to Domains′ (Lookahead).

• If any Domains′i is empty, continue.

• Backtrack(x ∪ {Xi : v},wδ,Domains′)

11/53

Variable Choices

Choosing Unassigned Variable:

• Choose the variable with the smallest domain.

• Heuristic - most constrained (smaller branching factors)

Ordering Domaini :

• What order do we try values of Xi?

• Try the ones with the largest number of consistent values of

neighboring variables.

• i.e. descending order of total size of possible consistent

options for neighbors after selecting xi = v .

• Impose fewest constraints on neighbors.

12/53

Arc Consistency

Definition
Arc Consistency: A variable Xi is arc consistent with respect to

Xj if for each xi ∈ Domaini there exists xj ∈ Domainj such that

f ({Xi : xi ,Xj : xj}) ̸= 0

for all f whose scope contains Xi and Xj

If there is some choice for Xi that has no viable Xj , we don’t need

it! Can use this to shrink domain in lookahead.

13/53

AC-3

Be careful, this is only a local view!

14/53

Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what?

Greedy

• K = ∞ is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.

15/53

Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what? Greedy

• K = ∞ is what?

BFS

Beam search is like a pruned BFS. Backtracking is DFS.

15/53

Beam Search

Greedy search is like DFS, but choose the assignment that gives

the largest weight and explore from there.

• Will finish in |X | steps.
• Cannot guarantee optimal whatsoever.

• Compromise: Greedy DFS but keep track of K best

candidates at each depth.

• Still not guaranteed, but better!

Denote the size of the beam as K . Then:

• K = 1 is what? Greedy

• K = ∞ is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.

15/53

Local Search

Backtracking and beam search build up assignments. Funnily

enough, backtracking can’t ‘backtrack’ information found deeper

in a tree to earlier assignments. If we reach a state that would be

feasible with just one variable change earlier, nothing we can do.

Solution: Local Search.

16/53

Local Search

Consider a completed assignment x . Try to improve it.

• Locality: To re-assign Xi , only need to consider factors that

depend on Xi .

• Iterated Conditional Modes (ICM) For each variable, try all

feasible re-assignments and pick the one with the highest

weight.

• Keep looping to convergence.

• Not guaranteed optimal, local minima.

• However, Weight(x) does monotonically increase.

17/53

Constraint Satisfaction Problem

(CSP) Review

Summary

18/53

Summary

To solve CSPs we use variations of backtracking.

• Can use one-step lookahead to reduce domains after assigning

a variable.

• Heuristics for choosing which variable to assign next, and what

order to consider the values in the domain of that variable.

• Arc Consistency (AC-3) reduces domains to be consistent

before starting the problem.

• Beam Search reduces the number of things to try in

backtracking (branching) but decreases accuracy.

• Local Search given an assignment, iteratively try to improve it.

19/53

Algorithms

Algorithm Strategy Optimality Time Complexity

Backtracking Extend partial assignment Exact exponential

Beam Search Extend partial assignment Approximate linear

Local Search Modify complete assignment Approximate linear

20/53

Problems

Problems

Dinner Table CSP

21/53

Dinner Table CSP

1. You (Y) are vegetarian.

2. If Veronica (V) orders beef,

then Jarvis (J) will order

veggie, and vice versa.

3. Kanti (K) and Jarvis (J) do

not want to both get

non-chicken dishes.

4. Each person wants to order

something different than

what the two friends sitting

next to them order.

22/53

Dinner Table CSP

• What are the variables

X = (X1, ...,Xn)?

• What are the values that

can be assigned to each

variable?

23/53

Dinner Table CSP

• What are the variables

X = (X1, ...,Xn)?

• The variables are the people

at the dinner, i.e.

X = [Y , J,K ,G ,V].

• What are the values that

can be assigned to each

variable?

• The values that can be

assigned to each variable are

the possible types of dishes,

i.e. [Veggie, Chicken, Beef].

24/53

Dinner Table CSP

• What are the factors

between the variables?

1. You (Y) are vegetarian.

2. If Veronica (V) orders beef,

then Jarvis (J) will order

veggie, and vice versa.

3. Kanti (K) and Jarvis (J) do

not want to both get

non-chicken dishes.

4. Each person wants to order

something different than

what the two friends sitting

next to them order.
25/53

Dinner Table CSP

• What are the factors

between the variables?

1. You (Y) are vegetarian.

2. If Veronica (V) orders beef,

then Jarvis (J) will order

veggie, and vice versa.

3. Kanti (K) and Jarvis (J) do

not want to both get

non-chicken dishes.

4. Each person wants to order

something different than

what the two friends sitting

next to them order.
26/53

Dinner Table CSP

• Arc consistency: cross out

the values in the domain

that are removed by the

constraints.

27/53

Dinner Table CSP

Your server comes by your table

and says that they are out of

beef today, so you and your

friends decide to rework your

constraints. Now they are:

1. You (Y) are vegetarian.

2. Each person wants to order

something different than

what the two friends sitting

next to them order.

28/53

Dinner Table CSP

1. You (Y) are vegetarian.

2. Each person wants to order

something different than

what the two friends sitting

next to them order.

Is this new constraint problem

satisfiable?

29/53

Dinner Table CSP

1. You (Y) are vegetarian.

2. Each person wants to order

something different than

what the two friends sitting

next to them order.

Is this new constraint problem

satisfiable?

Nope! Assign Y = veggie, then

alternate chicken and veggie

clockwise. Y and V won’t be arc

consistent.

30/53

Dinner Table CSP

1. You (Y) are vegetarian.

2. Instead of hard requiring

every adjacent person to

order something different, it

is now only a preference. To

represent this, you define

factors:

• f1(Y , J) = 1[Y ̸= J] + 1

• f2(J,K) = 1[J ̸= K] + 1

• f3(K ,G) = 1[K ̸= G] + 1

• f4(G ,V) = 1[G ̸= V] + 1

• f5(V ,Y) = 1[V ̸= Y] + 1

31/53

Dinner Table CSP

• f1(Y , J) = 1[Y ̸= J] + 1

• f2(J,K) = 1[J ̸= K] + 1

• f3(K ,G) = 1[K ̸= G] + 1

• f4(G ,V) = 1[G ̸= V] + 1

• f5(V ,Y) = 1[V ̸= Y] + 1

Weight(X) =
m∏
i

fi (X) > 0

An assignment to X is consistent

if its weight is > 0.

A problem is satisfiable if max

weight > 0.

32/53

Dinner Table CSP

• f1(Y , J) = 1[Y ̸= J] + 1

• f2(J,K) = 1[J ̸= K] + 1

• f3(K ,G) = 1[K ̸= G] + 1

• f4(G ,V) = 1[G ̸= V] + 1

• f5(V ,Y) = 1[V ̸= Y] + 1

Weight(X) =
m∏
k

fk(X) > 0

What is the max weight?

Alternate veggie, chicken

clockwise starting from Y .

Weight = 24 ∗ 1 = 16.

33/53

Problems

N-Queens

34/53

N-Queens

The N-Queens problem is a

classic puzzle involving the

placement of N chess queens on

an N × N chessboard so that no

two queens threaten each other.

To formulate this as a CSP, let

our variables be the column

placement of each queen

Q = Q1, ...,QN , where Q1 is the

queen of the first row, etc.

35/53

N-Queens

To formulate this as a CSP, let

our variables be the column

placement of each queen

Q = Q1, ...,QN , where Q1 is the

queen of the first row, etc.

Our constraints are then:

• No two queens are in the

same column

• No two queens are on the

same diagonal of the chess

board

36/53

N-Queens

Our constraints are then:

• No two queens are in the

same column

• No two queens are on the

same diagonal of the chess

board

How do we write these as

factors?

37/53

N-Queens

Our constraints are then:

• No two queens are in the

same column

f1(Qi ,Qj) = 1[Qi ̸= Qj]

• No two queens are on the

same diagonal of the chess

board

f2(Qi ,Qj) = 1[|Qi − Qj | ≠
|i − j |]

38/53

N-Queens

Our constraints are then:

• f1(Qi ,Qj) = 1[Qi ̸= Qj]

• f2(Qi ,Qj) = 1[|Qi − Qj | ≠
|i − j |]

Defining our factors this way

gives us a 0 weight for an

assignment that violates any

constraints.

Weight(X) =
m∏
k

fk(X) > 0

39/53

N-Queens

Suppose N = 4, and we want to

find a solution to the 4-Queens

problem through backtracking

search.

We’ll use the convention of

starting our assignments from

the top-most row 1, and go left

to right from column 1 to 4,

before moving on to the next

row, with the last row 4 at the

bottom of the board.

40/53

4-Queens - Backtracking Search

41/53

4-Queens - Backtracking Search

42/53

4-Queens - Backtracking Search

43/53

4-Queens - Forward Checking

This branch where we assign

Q1 = 1 ended up being a dead

end.

How do we use forward checking

to reduce the computation we

would’ve needed to realize that?

44/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

Remove from the domain any

values for the other variables Qi

where fk(Q1,Qi) = 0.

• f1(Q1 = 1,Q2 = 1) = 0

(column constraint)

• f2(Q1 = 1,Q2 = 2) = 0

(diagonal constraint)

Thus, Q2 : {1, 2, 3, 4} → {3, 4}

45/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

Remove from the domain any

values for the other variables Qi

where fk(Q1,Qi) = 0.

• f1(Q1 = 1,Q3 = 1) = 0

(column constraint)

• f2(Q1 = 1,Q3 = 3) = 0

(diagonal constraint)

Thus, Q3 : {1, 2, 3, 4} → {2, 4}

46/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

Remove from the domain any

values for the other variables Qi

where fk(Q1,Qi) = 0.

• f1(Q1 = 1,Q4 = 1) = 0

(column constraint)

• f2(Q1 = 1,Q4 = 4) = 0

(diagonal constraint)

Thus, Q4 : {1, 2, 3, 4} → {2, 3}

47/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

Remove from the domain any

values for the other variables Qi

where fk(Q1,Qi) = 0.

• Q2 : {1, 2, 3, 4} → {3, 4}
• Q3 : {1, 2, 3, 4} → {2, 4}
• Q4 : {1, 2, 3, 4} → {2, 3}

48/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

• Q2 : {3, 4}
• Q3 : {2, 4}
• Q4 : {2, 3}

Next, assign Q2 = 3

Using forward checking:

• f2(Q2 = 3,Q3 = 2) = 0

(diagonal constraint)

• f2(Q2 = 3,Q3 = 4) = 0

(diagonal constraint)

So Q3 has no more values!

Q2 = 3 is a dead end! 49/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

• Q2 : {3, 4}
• Q3 : {2, 4}
• Q4 : {2, 3}

Next, assign Q2 = 4

Using forward checking:

• f1(Q2 = 4,Q3 = 4) = 0

(column constraint)

• f2(Q2 = 4,Q4 = 2) = 0

(diagonal constraint)

This leaves Q3 : {2} & Q4 : {3}.

50/53

4-Queens - Forward Checking

Forward checking:

• Assign Q1 = 1

• Assign Q2 = 4

• Q3 : {2}
• Q4 : {3}

Next, assign Q3 = 2

Using forward checking:

• f2(Q3 = 2,Q4 = 3) = 0

Leaving Q4 with no value!

Backtracking up brings us back

to the Q1 assignment, hence

Q1 = 1 is a dead end!

51/53

4-Queens - Forward Checking

In short, forward checking

reduced our domain of possible

values to assign our variables, so

that later on in the branch, we

do fewer assignments.

Can lead to more efficient

runtimes if the forward check of

all the factors isn’t too intensive!

52/53

Problems

More practice - Problem 3: Farm Setup

CSP

53/53

	Constraint Satisfaction Problem (CSP) Review
	Defining CSPs
	Solving CSPs
	Summary

	Problems
	Dinner Table CSP
	N-Queens
	More practice - Problem 3: Farm Setup CSP

