Constraint Satisfaction Problem (CSP) Review

Constraint Satisfaction Problem (CSP) Review

Defining CSPs

Variable-Based Models

Search, MDPs, and games are state-based models. CSPs are variable-based models. Think in terms of variables $\left(x_{i}\right)$, factors $\left(f_{i}\right)$, and weights.

Solution to problems are assignments to variables. Use inference to make decisions (algorithms do more work now, compare to search where states did work).

Factor Graphs

Definition Factor Graph

- Variables: $X=\left(X_{1}, \ldots, X_{n}\right)$ where $X_{i} \in$ Domain $_{i}$
- Factors: f_{1}, \ldots, f_{m}, with each $f_{j}(X) \geq 0$.
- How good is assignment X

- Scope of factor f_{j} : set of variables it depends on.
- Arity of f_{j} : number of variables in scope.
- Unary (1 variables); Binary (2 variables)
- Constraints: factors that return 0 or 1 .

Assignment Weights

Definition

Assignment Weight: Every assignment $x=\left(x_{1}, \ldots, x_{n}\right)$ has weight

$$
\text { Weight }(x)=\prod_{j=1}^{m} f_{j}(x)
$$

- Consistent if Weight $(x)>0$.
- A CSP is satisfiable if $\max _{x}$ Weight $(x)>0$.

Objective: Find the maximum weight assignment:

$$
\operatorname{argmax}_{x} \text { Weight }(x)
$$

Test Your Understanding

If a CSP has an assignment \hat{x} such that $\operatorname{Weight}(\hat{x})=5$, is the CSP satisfiable? Recall that a CSP is satisfiable if

$$
\max _{x} \operatorname{Weight}(x)>0
$$

Test Your Understanding

If a CSP has an assignment \hat{x} such that $\operatorname{Weight}(\hat{x})=5$, is the CSP satisfiable? Recall that a CSP is satisfiable if

$$
\max _{x} \operatorname{Weight}(x)>0
$$

Yes, \hat{x} implies that the weight of the maximizing x is greater than zero.

Test Your Understanding

If a CSP has a factor $\hat{f}(x)=0$ for all x, is the CSP satisfiable?

Test Your Understanding

If a CSP has a factor $\hat{f}(x)=0$ for all x, is the CSP satisfiable? No, the weight is the product of all factors and \hat{f} is always zero. Hence the weight will always be zero.

Constraint Satisfaction Problem (CSP) Review

Solving CSPs

Dependent Factors

Definition
Dependent Factors: $D\left(x, X_{i}\right)$ is the set of factors depending on X_{i} (a single variable) and x (partial assignment) but not on unassigned variables.

- If you have assigned x_{1} and x_{2} in x, then $D\left(x, X_{3}\right)$ will be all factors that depend on x_{3} and one/both of x_{1} and x_{2}.
- i.e. if we want to assign x_{3} next, what constraints (factors) are relevant?
- Idea: choose x_{3} to satisfy all factors in $D\left(x, X_{3}\right)$!

Backtracking Search

Backtrack(x, w, Domains):

- If x is completely assigned, check if best and return.
- Choose unassigned variable X_{i} (component in x)
- Order Domain ${ }_{i}$ (corresponds to chosen X_{i})
- For each $v \in$ Domain $_{i}$:
- Compute value of newly resolvable factors, setting $x_{i}=v$:

$$
\delta=\prod_{f_{j} \in D\left(x, X_{i}\right)} f_{j}\left(x \cup\left\{X_{i}: v\right\}\right)
$$

- If $\delta=0$? Continue (at least one factor not satisfied).
- (Optional) Shrink domain to Domains' (Lookahead).
- If any Domains' is empty, continue.
- Backtrack $\left(x \cup\left\{X_{i}: v\right\}, w \delta\right.$, Domains')

Lookahead

Forward Checking (One-Step Lookahead)

- We consider an assignment for variable X_{i}.
- We can remove any values from neighbors of X_{i} that would violate factors. If any of these neighboring domains become empty, no solution, can skip this assignment.
- Note that these 'neighbors' are only X_{j} that are not assigned in x.

Example: x_{1}, x_{2}, and x_{3}. Domain is $\{-1,0,1\}$. Constraints $f(x)=x_{1} x_{2}=-1$. See that choosing $x_{1}=0$ leads to an empty lookahead domain for x_{2}.

Backtracking Search

Backtrack(x, w, Domains):

- If x is completely assigned, check if best and return.
- Choose unassigned variable X_{i} (component in x)
- Order Domain ${ }_{i}$ (corresponds to chosen X_{i})
- For each $v \in$ Domain $_{i}$:
- Compute value of newly resolvable factors, setting $x_{i}=v$:

$$
\delta=\prod_{f_{j} \in D\left(x, X_{i}\right)} f_{j}\left(x \cup\left\{X_{i}: v\right\}\right)
$$

- If $\delta=0$? Continue (at least one factor not satisfied).
- (Optional) Shrink domain to Domains' (Lookahead).
- If any Domains' is empty, continue.
- Backtrack $\left(x \cup\left\{X_{i}: v\right\}, w \delta\right.$, Domains')

Variable Choices

Choosing Unassigned Variable:

- Choose the variable with the smallest domain.
- Heuristic - most constrained (smaller branching factors)

Ordering Domain ${ }_{i}$:

- What order do we try values of X_{i} ?
- Try the ones with the largest number of consistent values of neighboring variables.
- i.e. descending order of total size of possible consistent options for neighbors after selecting $x_{i}=v$.
- Impose fewest constraints on neighbors.

Arc Consistency

Definition

Arc Consistency: A variable X_{i} is arc consistent with respect to X_{j} if for each $x_{i} \in$ Domain $_{i}$ there exists $x_{j} \in$ Domain $_{j}$ such that

$$
f\left(\left\{X_{i}: x_{i}, X_{j}: x_{j}\right\}\right) \neq 0
$$

for all f whose scope contains X_{i} and X_{j}

If there is some choice for X_{i} that has no viable X_{j}, we don't need it! Can use this to shrink domain in lookahead.

AC-3

> Algorithm: AC-3-
> $S \leftarrow\left\{X_{j}\right\}$.
> While S is non-empty:
> Remove any X_{j} from S.
> \quad For all neighbors X_{i} of X_{j} :
> \quad Enforce arc consistency on X_{i} w.r.t. X_{j}. \quad If Domain ${ }_{i}$ changed, add X_{i} to S.

Be careful, this is only a local view!

Beam Search

Greedy search is like DFS, but choose the assignment that gives the largest weight and explore from there.

- Will finish in $|X|$ steps.
- Cannot guarantee optimal whatsoever.
- Compromise: Greedy DFS but keep track of K best candidates at each depth.
- Still not guaranteed, but better!

Denote the size of the beam as K. Then:

- $K=1$ is what?

Beam Search

Greedy search is like DFS, but choose the assignment that gives the largest weight and explore from there.

- Will finish in $|X|$ steps.
- Cannot guarantee optimal whatsoever.
- Compromise: Greedy DFS but keep track of K best candidates at each depth.
- Still not guaranteed, but better!

Denote the size of the beam as K. Then:

- $K=1$ is what? Greedy
- $K=\infty$ is what?

Beam Search

Greedy search is like DFS, but choose the assignment that gives the largest weight and explore from there.

- Will finish in $|X|$ steps.
- Cannot guarantee optimal whatsoever.
- Compromise: Greedy DFS but keep track of K best candidates at each depth.
- Still not guaranteed, but better!

Denote the size of the beam as K. Then:

- $K=1$ is what? Greedy
- $K=\infty$ is what? BFS

Beam search is like a pruned BFS. Backtracking is DFS.

Local Search

Backtracking and beam search build up assignments. Funnily enough, backtracking can't 'backtrack' information found deeper in a tree to earlier assignments. If we reach a state that would be feasible with just one variable change earlier, nothing we can do.

Solution: Local Search.

Local Search

Consider a completed assignment x. Try to improve it.

- Locality: To re-assign X_{i}, only need to consider factors that depend on X_{i}.
- Iterated Conditional Modes (ICM) For each variable, try all feasible re-assignments and pick the one with the highest weight.
- Keep looping to convergence.
- Not guaranteed optimal, local minima.
- However, Weight (x) does monotonically increase.

Constraint Satisfaction Problem (CSP) Review

Summary

Summary

To solve CSPs we use variations of backtracking.

- Can use one-step lookahead to reduce domains after assigning a variable.
- Heuristics for choosing which variable to assign next, and what order to consider the values in the domain of that variable.
- Arc Consistency (AC-3) reduces domains to be consistent before starting the problem.
- Beam Search reduces the number of things to try in backtracking (branching) but decreases accuracy.
- Local Search given an assignment, iteratively try to improve it.

Algorithms

Algorithm
Backtracking
Beam Search
Local Search

Strategy

Extend partial assignment
Extend partial assignment
Modify complete assignment

Optimality Exact
Approximate Approximate

Time Complexity
exponential
linear
linear

Problems

Problems

Dinner Table CSP

Dinner Table CSP

Dinner Table CSP

- What are the variables $X=\left(X_{1}, \ldots, X_{n}\right)$?
- What are the values that can be assigned to each variable?

Dinner Table CSP

- What are the variables $X=\left(X_{1}, \ldots, X_{n}\right)$?
- The variables are the people at the dinner, i.e.
$X=[Y, J, K, G, V]$.
- What are the values that
can be assigned to each variable?
- The values that can be assigned to each variable are the possible types of dishes, i.e. [Veggie, Chicken, Beef].

Dinner Table CSP

Veggie Chicken Beef

- What are the factors between the variables?

1. You (Y) are vegetarian.
2. If Veronica (V) orders beef, then Jarvis (J) will order veggie, and vice versa.
3. Kanti (K) and Jarvis (J) do not want to both get non-chicken dishes.
4. Each person wants to order something different than what the two friends sitting next to them order.

Dinner Table CSP

- What are the factors
 between the variables?

1. You (Y) are vegetarian.
2. If Veronica (V) orders beef, then Jarvis (J) will order veggie, and vice versa.
3. Kanti (K) and Jarvis (J) do not want to both get non-chicken dishes.
4. Each person wants to order something different than what the two friends sitting next to them order.

Dinner Table CSP

- Arc consistency: cross out
 the values in the domain that are removed by the constraints.

Dinner Table CSP

Your server comes by your table
and says that they are out of
beef today, so you and your
friends decide to rework your
constraints. Now they are:

Dinner Table CSP

Dinner Table CSP

Veggie Chicken
Y

Veggie Chicken
J

1. You (Y) are vegetarian.
2. Each person wants to order something different than what the two friends sitting next to them order.

Is this new constraint problem satisfiable?

Nope! Assign $Y=$ veggie, then alternate chicken and veggie clockwise. Y and V won't be arc consistent.

Dinner Table CSP

Veggie Chicken Y

Veggie Chicken

Veggie Chicken

1. You (Y) are vegetarian.
2. Instead of hard requiring every adjacent person to order something different, it is now only a preference. To represent this, you define factors:

- $f_{1}(Y, J)=\mathbb{1}[Y \neq J]+1$
- $f_{2}(J, K)=\mathbb{1}[J \neq K]+1$
- $f_{3}(K, G)=\mathbb{1}[K \neq G]+1$
- $f_{4}(G, V)=\mathbb{1}[G \neq V]+1$
- $f_{5}(V, Y)=\mathbb{1}[V \neq Y]+1$

Dinner Table CSP

Veggie Chicken

Veggie Chicken

Veggie Chicken
G

- $f_{1}(Y, J)=\mathbb{1}[Y \neq J]+1$
- $f_{2}(J, K)=\mathbb{1}[J \neq K]+1$
- $f_{3}(K, G)=\mathbb{1}[K \neq G]+1$
- $f_{4}(G, V)=\mathbb{1}[G \neq V]+1$
- $f_{5}(V, Y)=\mathbb{1}[V \neq Y]+1$

$$
\text { Weight }(X)=\prod_{i}^{m} f_{i}(X)>0
$$

An assignment to X is consistent if its weight is >0.
A problem is satisfiable if max weight >0.

Dinner Table CSP

- $f_{1}(Y, J)=\mathbb{1}[Y \neq J]+1$
- $f_{2}(J, K)=\mathbb{1}[J \neq K]+1$
- $f_{3}(K, G)=\mathbb{1}[K \neq G]+1$
- $f_{4}(G, V)=\mathbb{1}[G \neq V]+1$
- $f_{5}(V, Y)=\mathbb{1}[V \neq Y]+1$

Weight $(X)=\prod_{k}^{m} f_{k}(X)>0$
What is the max weight?
Alternate veggie, chicken
clockwise starting from Y.
Weight $=2^{4} * 1=16$.

Problems

N-Queens

N -Queens

The N -Queens problem is a classic puzzle involving the placement of N chess queens on an $N \times N$ chessboard so that no two queens threaten each other.

To formulate this as a CSP, let our variables be the column placement of each queen $Q=Q_{1}, \ldots, Q_{N}$, where Q_{1} is the queen of the first row, etc.

N -Queens

To formulate this as a CSP, let our variables be the column placement of each queen $Q=Q_{1}, \ldots, Q_{N}$, where Q_{1} is the queen of the first row, etc.

Our constraints are then:

- No two queens are in the same column
- No two queens are on the same diagonal of the chess board

N -Queens

Our constraints are then:

- No two queens are in the same column
- No two queens are on the same diagonal of the chess board

How do we write these as factors?

N -Queens

Our constraints are then:

- No two queens are in the same column

$$
f_{1}\left(Q_{i}, Q_{j}\right)=\mathbb{1}\left[Q_{i} \neq Q_{j}\right]
$$

- No two queens are on the same diagonal of the chess board
$f_{2}\left(Q_{i}, Q_{j}\right)=\mathbb{1}\left[\left|Q_{i}-Q_{j}\right| \neq\right.$ $|i-j|]$

N -Queens

Our constraints are then:

- $f_{1}\left(Q_{i}, Q_{j}\right)=\mathbb{1}\left[Q_{i} \neq Q_{j}\right]$
- $f_{2}\left(Q_{i}, Q_{j}\right)=\mathbb{1}\left[\left|Q_{i}-Q_{j}\right| \neq\right.$ $|i-j|]$
Defining our factors this way
gives us a 0 weight for an
assignment that violates any constraints.

$$
\text { Weight }(X)=\prod_{k}^{m} f_{k}(X)>0
$$

N-Queens

Suppose $N=4$, and we want to find a solution to the 4-Queens problem through backtracking search.

We'll use the convention of starting our assignments from the top-most row 1 , and go left to right from column 1 to 4 , before moving on to the next row, with the last row 4 at the bottom of the board.

4-Queens - Backtracking Search

4-Queens - Backtracking Search

4-Queens - Backtracking Search

4-Queens - Forward Checking

This branch where we assign $Q_{1}=1$ ended up being a dead end.

How do we use forward checking to reduce the computation we would've needed to realize that?

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$

Remove from the domain any values for the other variables Q_{i} where $f_{k}\left(Q_{1}, Q_{i}\right)=0$.

- $f_{1}\left(Q_{1}=1, Q_{2}=1\right)=0$ (column constraint)
- $f_{2}\left(Q_{1}=1, Q_{2}=2\right)=0$
(diagonal constraint)
Thus, $Q_{2}:\{1,2,3,4\} \rightarrow\{3,4\}$

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$

Remove from the domain any values for the other variables Q_{i} where $f_{k}\left(Q_{1}, Q_{i}\right)=0$.

- $f_{1}\left(Q_{1}=1, Q_{3}=1\right)=0$ (column constraint)
- $f_{2}\left(Q_{1}=1, Q_{3}=3\right)=0$
(diagonal constraint)
Thus, $Q_{3}:\{1,2,3,4\} \rightarrow\{2,4\}$

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$

Remove from the domain any values for the other variables Q_{i} where $f_{k}\left(Q_{1}, Q_{i}\right)=0$.

- $f_{1}\left(Q_{1}=1, Q_{4}=1\right)=0$ (column constraint)
- $f_{2}\left(Q_{1}=1, Q_{4}=4\right)=0$
(diagonal constraint)
Thus, $Q_{4}:\{1,2,3,4\} \rightarrow\{2,3\}$

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$

Remove from the domain any values for the other variables Q_{i} where $f_{k}\left(Q_{1}, Q_{i}\right)=0$.

- $Q_{2}:\{1,2,3,4\} \rightarrow\{3,4\}$
- $Q_{3}:\{1,2,3,4\} \rightarrow\{2,4\}$
- $Q_{4}:\{1,2,3,4\} \rightarrow\{2,3\}$

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$
- $Q_{2}:\{3,4\}$
- $Q_{3}:\{2,4\}$
- $Q_{4}:\{2,3\}$

Next, assign $Q_{2}=3$
Using forward checking:

- $f_{2}\left(Q_{2}=3, Q_{3}=2\right)=0$
(diagonal constraint)
- $f_{2}\left(Q_{2}=3, Q_{3}=4\right)=0$
(diagonal constraint)
So Q_{3} has no more values!
$Q_{2}=3$ is a dead end!

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$
- $Q_{2}:\{3,4\}$
- $Q_{3}:\{2,4\}$
- $Q_{4}:\{2,3\}$

Next, assign $Q_{2}=4$
Using forward checking:

- $f_{1}\left(Q_{2}=4, Q_{3}=4\right)=0$ (column constraint)
- $f_{2}\left(Q_{2}=4, Q_{4}=2\right)=0$ (diagonal constraint)

This leaves $Q_{3}:\{2\} \& Q_{4}:\{3\}$.

4-Queens - Forward Checking

Forward checking:

- Assign $Q_{1}=1$
- Assign $Q_{2}=4$
- $Q_{3}:\{2\}$
- $Q_{4}:\{3\}$

Next, assign $Q_{3}=2$
Using forward checking:

- $f_{2}\left(Q_{3}=2, Q_{4}=3\right)=0$

Leaving Q_{4} with no value!
Backtracking up brings us back
to the Q_{1} assignment, hence
$Q_{1}=1$ is a dead end!

4-Queens - Forward Checking

In short, forward checking reduced our domain of possible values to assign our variables, so that later on in the branch, we do fewer assignments.

Can lead to more efficient

runtimes if the forward check of
all the factors isn't too intensive!

Problems

More practice - Problem 3: Farm Setup CSP

