CS221 Problem Workout

Week 7

Content from some slides are inspired by COMS 4701, by Prof. Tony B. Dear of
Columbia University
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Markov Networks

Markov networks = factor graphs + probability

-% Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random
variables X = (Xi,...,Xy):
Weight(x)

BX =g)= >

where Z = )", Weight(z') is the normalization constant.

CSPs Markov networks
variables random variables
weights probabilities
maximum weight assignment marginal probabilities
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Marginalization

- Given a joint distribution, we can find distributions over subsets of
- RVs We can sum out or marginalize irrelevant RVs

P(Y) = z P(Y,Z = 2)

P(t) =Z P(t,w) T | Pl

hot 0.5

hot sun 0.4

hot rain 0.1
cold | sun 0.2 P(w) = th(t' w) W Pr(W)

cold rain 0.3 — > sun 0.6
rain 0.4
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This problem will give you some practice on computing probabilities given a Markov

PI' bl m 1 network. Specifically, given the Markov network below, we will ask you questions
O e about the probability distribution p(X;, X5, X3) over the binary random variables

Xl, XQ, and X3.

= = O O
= O = O
=N e
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Car Insurance Pricing

Let’s imagine you are buying car insurance. How does the insurance company come
up with a quote given your profile?
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Car Insurance Pricing

Let’s imagine you are buying car insurance. How does the insurance company come
up with a quote given your profile?

Considerations:

- Pricing model should reflect your driving history, vehicle condition, etc
- Observable variables: age, driving record, vehicle make model.
- Unobservable variables: liability cost, medical cost, etc
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Bayesian Networks

e Handle heterogenously missing information, both at training and test time
e Incorporate prior knowledge (e.g., Mendelian inheritance, laws of physics)
e Can interpret all the intermediate variables

e Precursor to causal models (can do interventions and counterfactuals)
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Bayesian Networks

Bayesian network: A directed acyclic graph (DAG) representation of a
distribution

Each node corresponds to a random variable
Each edge indicates influence or correlation (sometimes causation)

Parameters of the Bayes net: A conditional probability table for

each node
The table for a node X_i contains the values P( X_i | parents( X_i) )

@ ra

P(W)

pericy LD (@

P(G,1Gy)
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Car Insurance Pricing - Inference

How to compute the conditional probability of the unobservable variables:
liability cost, medical cost, etc, conditioned on observable variables: age,
driving record, vehicle make model
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Bayesian Networks

Joint distribution: we use conditional independence to compute joint
distributions.

n n
Pty ) = | [ PCulty, worxicy) = [ [ PCulparents (x)
i=1 i=1
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Bayesian Networks Inference

Joint distribution: we use conditional independence to compute joint
distributions.

n n
Pty ) = | [ PCulty, worxicy) = [ [ PCulparents (x)
i=1 i=1

- Example:
- P(w, c1,t,c2) = P(w) P(c1)P(t | ¢c1)P(c2|c1)

@ o

P(W)

NN D

P(C;1Cy)
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Bayesian Networks Inference

Joint distribution: we use conditional independence to compute joint
distributions.

n n
Pty ) = | [ PCulty, worxicy) = [ [ PCulparents (x)
i=1 i=1

- Structure of the Bayes Net reveals relations between variables.
- Given a table for P(Trivia Score | Hours Studying), can infer Hour Studying is

parent of trivia score!
Trivia Crack Pickleball
Ranking Score
Trivia Respect Among
Score Friends
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Conditional Independence

We know that a node is independent of its “ancestors” given all its parents
More generally, a node is independent of its "non-descendants” given its parents

These imply several local conditional independences that can be inferred from Bayes net
structure only
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Probability essentials
P(z,y)
P(y)

- Product rule P(z,y) = P(x|y)P(y)

Conditional probability P(zxly) =

- Chainrule P(X1,X2,...Xn) = P(X1)P(X3|X1)P(X3]|X1,X2)..

n
= |] P(Xi|X1,...,X;-1)
=1

- X, Yareindependent iff: Vz,y: P(z,y) = P(z)P(y)

- XandY are conditionally independent given Z iff:

Vz,y, 2 : P(z,y|z) = P(z[z)P(y|?) X1Y|Z
- Bayesrule  p(gly) — Plgﬂ(??;?;) _ P(y1|3$()y])3($)
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Problem 2

P(X|D)
P(A|D, X) +d | +x | 0.7
+d | +z | +a | 0.9 +d | —z | 0.3
+d | +z | —a | 0.1 —d | +z | 0.8
+d | -z | +a | 0.8 P(D) —d| -z |02
+d | —z | —a | 0.2 +d | 0.1
—d|[+z | +a [ 0.6 —d | 0.9 P(B|D)
—d| 4z | —a | 04 +d | +b | 0.7
—d|-z]+a]01 +d | —b |03
—d | =2 | —a | 08 —d | +b | 0.5
—d | -b |05

(a) Given the tables above, draw a minimal representative Bayesian network of this
model. Be sure to label all nodes and the directionality of the edges.

(b) Compute the following probabilities: P(+d, +a), P(+d | +a), P(+d | + b).

(c) Which of the following conditional independences are guaranteed by the above
network?

0 X 1 B|D OD1 A|B

OD1A|X ODIX|A



Sampling

- Motivation: Exact inference becomes impossible when we have too many variables
- Sample the Bayes net using the known conditional probability tables

1. Sample from P(C). Suppose we get +c.

2. Sample from
P(S| + ¢). Suppose
we get +s.

3. Sample from
P(R| + c). Suppose
we get —r.

4. Sample from P(W| + s,—r). Suppose we get —w.
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Sampling

- Motivation: Exact inference becomes

impossible when we have too many variables
- Sample the Bayes net using the

known conditional probability tables

1. Sample from P(C). Suppose we get +c.

2. Sample from e 3. Sample from

P(S| + c). Suppose P(R| + c). Suppose
we get +s. e.o we get —.

4. Sample from P(W| + s,—7). Suppose we get —w.

= Suppose we get 5 samples: B(R)

* (+c, -s, +r, +W) prE

o (+c, +s, +r, +W) -r 0.2

(e 45,41, W) PCW)  P(SIW)

o (+c, -s, +r, +W) +c|+w|0.6] [+w]| +s [0.25
w0 -s [0.75

* (¢, -5, -, +w) -c |[+w|0.2 -w|+s | 1
-w |0.2 -S 0

Stanford University
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t ot 99
t f|1 90
ft 90
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Gibbs Sampling

- Problem: How do we sample from P(Xi | all other nodes in Bayes Net)?

-g Algorithm: Gibbs sampling

Initialize z to a random complete assignment
Loop through ¢« = 1,...,n until convergence:
Set z; = v with prob. P(X; =v | X_; = x_;)

(X_; denotes all variables except X;)

Increment count;(z;)

Estimate P(X; = ;) = Ecoir;turff()v)

Stanford University
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Special Case of Bayes Net: HMM

- Hidden Markov model: A Markov process with hidden states X_r and
observable evidence variables E ¢

- Initial belief state: P(X0) @ @ @ @ ———>

- Transition model: P(X_r|X_t-1)

- Observation model: P(E_t|X_1) ‘ ‘ ‘ ‘
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HMM Inference

QRO

P(X; | X; 1)
P(E; | Xy)

= General joint distribution:

“
P(XlaEla"'aXTaET) — P(Xl)P(El‘Xl)HP(Xt‘Xt—l)P(Et|Xt)
=0

= Marginal distributions can be found by summing out RVs
= For certain computations we don’t even need the entire joint distribution!

Stanford University
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Problem 3

The viewerships of the two teams evolve according to the following model, where each
month a fan is either gained or lost with equal probability:

% ifMH_let—l % ith+1=Bt—1
Pr(Mt+1|Mt) = % if Mt+1 = Mt +1 Pr(Bt+1|Bt) = % if Bt+1 Bt +1
0 otherwise 0 otherwise

The Bayesian fans like to rewatch their trivia shows by searching the recaps online!
We model the fan’s size’s influence on the number of internet searches by:

(03 if S, =
0.25 lf St Bt -1
0.2 if St = Bt -2

Pr(SiB) =\ 015 it 5, =B, -3
n + = =
0.1 if St Bt —4
0 otherwise

\

Lastly, because most TV viewers attend each monthly friendly matches (although
sometimes more, and sometimes fewer), we model the influence of the TV viewership
number on the friendly match attendance by:

0.13 if |4, — (B, + My)| =1

0.11 if |A, — (B + M,)| =2
Pr(A;|By, M;) = 0.09 if |A, — (B, + M,)| = 3
0.06 if |A; — (B;+M,)| =4

0.04 if |[A,— (By+M,)| =5
0 otherwise

\

@ (=) (2®
® (4

Figure 1: The changing TV viewership count modeled as a dynamic Bayesian network. The
unshaded nodes correspond to the latent/hidden TV viewership counts, and the shaded
nodes correspond to the observable emissions.

a. (10 points) Inference

(0.14 if A; = By + M; Suppose the Bayesian’s trivia team captain took a nationwide poll in month ¢ that
concluded they had exactly 75 TV viewers. Suppose additionally that in month ¢ + 2,
the search engine reported 73 people search for the Bayesians online. What is the
probability that in month ¢ + 2 the Bayesians have 77 TV viewers?

PI'(Bt+2 = 77|Bt = 75, St+2 = 73) =
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Problem 3

The viewerships of the two teams evolve according to the following model, where each

month a fan is either gained or lost with equal probability:

Pr(Mt+1 | Mt) =

O NI- N

otherwise

The Bayesian fans like to rewatch their trivia shows by searching the recaps online!
We model the fan’s size’s influence on the number of internet searches by:

Pr(St | Bt) =

lf Mt+1 = Mt - 1
lf Mt+1 — Mt + 1

Pr(Bt+1 | Bt) =

(0.3 if S, =
0.25 if S, = Bt =l
02 ifS = Bt -2
015 if S;=B;—3
01 ifS = Bt -4
0 otherwise

O NI N

lf Bt+1 = Bt - 1
if Bt+1 Bt +1
otherwise

@ (=) (2®
® (4

Figure 1: The changing TV viewership count modeled as a dynamic Bayesian network. The
unshaded nodes correspond to the latent/hidden TV viewership counts, and the shaded
nodes correspond to the observable emissions.

Lastly, because most TV viewers attend each monthly friendly matches (although
sometimes more, and sometimes fewer), we model the influence of the TV viewership
number on the friendly match attendance by:

Pr(At|Bt, Mt) =

\

(0.14

0.13
0.11

4 0.09

0.06
0.04
0

if Ay = By + M;

if |A; — (By + M,
if |A; — (By + M,
if |4y — (By + M,
if |A; — (B + M,
if |[A; — (B: + M,

otherwise

b. (4 points) Extra Practice - Gibbs Sampling

Inference is exhausting; you decide that you’d be satisfied with simply being able to
draw samples from distributions rather than specifying them exactly. In particular,
you want to sample joint assignments to the variables { B;, M, A4;, S;}£_, for some time
horizon T'. You decide to implement Gibbs sampling for this purpose, but something’s
not right! What additional information, beyond what we’ve given you, would allow
you to perform Gibbs sampling? Briefly explain.
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Thank You
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