Hidden Markov Model (HMM)
Review

Hidden Markov Model (HMM) Review

(Example from Prof. Jurafsky's book)

Hidden Markov Model (HMM) Review

Defining HMMs

Defining HMMs - Ice Cream Example

Famous problem by Jason Eisner (2002) where you want to predict if a day was COLD or HOT (your hidden states) based on records of the \# of ice creams (your known evidence) Eisner ate that day.

- $S=\left\{s_{1} \ldots s_{N}\right\}, N$ states (2 states: cold or hot)
- $A=a_{11} \ldots a_{i j} \ldots a_{N N}$, transition probabilities (e.g. cold \rightarrow hot?)
- $B=b_{i}\left(o_{t}\right)$, emission probabilities (e.g. 3 ice creams \rightarrow hot?)
- $\pi=\left\{\pi_{1} \ldots \pi_{N}\right\}$, initial probabilities (e.g. start \rightarrow hot?)

Defining HMMs - Ice Cream Example

Famous problem by Jason Eisner (2002) where you want to predict if a day was COLD or HOT (your hidden states) based on records of the \# of ice creams (your known evidence) Eisner ate that day.

HMM problem to motivate the Forward Algorithm:

- Given HMM λ (like above), what is the probability $P(O \mid \lambda)$ of a specific observation sequence O (evidence e.g. 313)?

Hidden Markov Model (HMM) Review

The Forward Algorithm

The Forward Algorithm - Ice Cream Example

HMM problem to motivate the Forward Algorithm:

- Given HMM λ (like above), what is the probability $P(O \mid \lambda)$ of a specific observation sequence O (evidence e.g. 313)?

First, consider an easier problem: suppose our states are not hidden (we just have a "Markov model") and we have $Q=$ (hot hot cold).

What is the probability (aka likelihood) of $O=3,1,3$?

The Forward Algorithm - Ice Cream Example

First, consider an easier problem: suppose our states are not hidden (we just have a "Markov model") and we have $Q=$ (hot hot cold). What is the probability (aka likelihood) of $O=3,1,3$?

$$
P(O \mid Q)=\prod_{t}^{T} P\left(o_{t} \mid q_{t}\right)
$$

$$
P(313 \mid \text { hot hot cold })=P(3 \mid \text { hot }) P(1 \mid \text { hot }) P(3 \mid \text { cold })
$$

The Forward Algorithm - Ice Cream Example

Simplification: probability $O=3,1,3$ given $Q=$ (hot hot cold)?

$$
P(313 \mid \text { hot hot cold })=P(3 \mid \text { hot }) P(1 \mid \text { hot }) P(3 \mid \text { cold })
$$

The Forward Algorithm - Ice Cream Example

Simplification: probability $O=3,1,3$ given $Q=($ hot hot cold $)$?

$$
P(31 \text { 3|hot hot cold })=P(3 \mid \text { hot }) P(1 \mid \text { hot }) P(3 \mid \text { cold })
$$

Back to the original problem: we don't know the actual weather sequence - it's a HIDDEN Markov model!

What is the probability of 313 given the HMM?

The Forward Algorithm - Ice Cream Example

Back to the original problem: we don't know the actual weather sequence - it's a HIDDEN Markov model!

What is the probability of 313 given the HMM?
Brute Force: Sum over all possible weather sequences:
$P(313$, cold cold cold $)$? $P(313$, hot cold cold)?
$P(313$, hot hot cold)? etc...?
Then add them all together...

The Forward Algorithm - Ice Cream Example

What is the probability of 313 given the HMM?
Brute Force: Sum over all possible weather sequences: $P(313$, cold cold cold $)$? $P(313$, hot cold cold $)$? etc...?
$P(O, Q)$ is the joint probability:

$$
P(O, Q)=P(O \mid Q) P(Q)=\prod_{t}^{T} P\left(o_{t} \mid q_{t}\right) \prod_{t}^{T} P\left(q_{t} \mid q_{t-1}\right)
$$

The Forward Algorithm - Ice Cream Example

$P(O, Q)$ is the joint probability:

$$
P(O, Q)=P(O \mid Q) P(Q)=\prod_{t}^{T} P\left(o_{t} \mid q_{t}\right) \prod_{t}^{T} P\left(q_{t} \mid q_{t-1}\right)
$$

Example: joint probability of $O=313$ and $Q=$ hot hot cold
$P(O, Q)=P(3 \mid$ hot $) P(1 \mid$ hot $) P(3 \mid$ cold $) P($ hot \mid start $) P($ hot \mid hot $) P($ cold \mid hot $)$

The Forward Algorithm - Ice Cream Example

Example: joint probability of $O=313$ and $Q=$ hot hot cold $P(O, Q)=P(3 \mid$ hot $) P(1 \mid$ hot $) P(3 \mid$ cold $) P($ hot \mid start $) P($ hot \mid hot $) P($ cold \mid hot $)$

The Forward Algorithm - Ice Cream Example

What is the probability of 313 given the HMM?
Brute Force: Sum over all possible weather sequences:
$P(313$, cold cold cold $)+P(313$, hot cold cold $)+P(313$, hot hot cold) $+\ldots$

This is a N^{T} operation with N states and T observations!
Not efficient for more complex problems!

The Forward Algorithm - Ice Cream Example

What is the probability of 313 given the HMM?
$P(313$, cold cold cold $)+P(313$, hot cold cold $)+P(313$, hot hot cold) $+\ldots$

This is a N^{T} operation with N states and T observations!
Forward Algorithm does this in $O\left(N^{2} T\right)$ via dynamic programming!

The Forward Algorithm - Ice Cream Example

The Forward Algorithm - Ice Cream Example

Formally, for each cell $\alpha_{t}(j)$ in our lattice structure, we compute

$$
\alpha_{t}(j)=\sum_{i}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)
$$

and the probability of sequence 313 is at the end

$$
P(O \mid \lambda)=\sum_{i}^{N} \alpha_{T}(i)
$$

Hidden Markov Model (HMM) Review

Relating back to Lecture

The Problem of Filtering

Problem of Filtering: what is the distribution of a hidden state H_{i} based on the observations aka evidence (E in lecture) so far? Check your understanding: what is the distribution of q_{2} in the ice cream example given observations $O: o_{1}=3$ and $o_{2}=1$?

The Problem of Filtering

Problem of Filtering: what is the distribution of q_{2} in the ice cream example given observations $O: o_{1}=3$ and $o_{2}=1$?
$P\left(q_{2}=\mathrm{H} \mid o_{1}, o_{2}\right)=\frac{0.0404}{0.0404+0.069}, P\left(q_{2}=\mathrm{C} \mid o_{1}, o_{2}\right)=\frac{0.069}{0.0404+0.069}$

The Problem of Smoothing

Problem of Smoothing: what is the distribution of a hidden state H_{i} based ALL observations aka evidence from start to end?
Forward Algorithm is not enough! What if hypothetically a later transition is 0 ?

The Problem of Smoothing

For Smoothing, need Forward AND Backward passes!

- Forward: compute $\alpha_{t}(i)$ or F from lecture.
- Backward: compute $\beta_{t}(i)$ or B from lecture.
- Define $S=F B$, that is for each cell in the lattice, multiply the forward and backward results together.

What happens now if there is a 0 along the backward pass?

The Problem of Smoothing

- Forward: compute $\alpha_{t}(i)$ or F from lecture.
- Backward: compute $\beta_{t}(i)$ or B from lecture.
- Define $S=F B$

Suppose $\beta_{2}(1)=0.03, \beta_{2}(2)=0.02$ (made up numbers).
What is the distribution of q_{2} given all observations O ?

The Problem of Smoothing

Suppose $\beta_{2}(1)=0.03, \beta_{2}(2)=0.02$ (made up numbers).
What is the distribution of q_{2} given all observations O ?
$P\left(q_{2}=\mathrm{H} \mid O\right)=\frac{0.0404 * 0.02}{0.0404 * 0.02+0.069 * 0.03}$
$P\left(q_{2}=C \mid O\right)=\frac{0.069 * 0.03}{0.0404 * 0.02+0.069 * 0.03}$
Check back on the lecture slides to make sure you see the parallel!

Hidden Markov Model (HMM) Review

Particle Filtering

Motivation for Particle Filtering

For T observations and N possible states (i.e. \mid domain $\mid=N$), the Forward-Backward Algorithm is $O\left(2 * N^{2} T\right) \rightarrow O\left(N^{2} T\right)$.

This can still be slow if N is large! Or consider if the domain is based on a continuous function, e.g. instead of just hot or cold, we have to consider a spectrum of floating point temperatures $[0,100]$.

Particle Filtering

Big idea of Particle Filtering: introduce sampling!

1. First, we propose assignments aka particles to each hidden state by sampling from the transition probabilities.

Example: proposing a value for q_{1} involves sampling from $P(H \mid$ start $)=0.8$ and $P(C \mid$ start $)=0.2$, i.e. we have an 80% chance to pick hot, 20% chance to pick cold.

Particle Filtering

1. First, we propose assignments aka particles to each hidden state by sampling from the transition probabilities.
2. Second, we weight each assignment by the emission probabilities.

Particle Filtering

2 Second, we weight each assignment by the emission probabilities.

Example: suppose we have 3 particles of $q_{1}=H, q_{1}=H, q_{1}=C$, and we have the observation $o_{1}=1$.
Then the weights of our particles are $P(1 \mid H)=0.2, P(1 \mid H)=0.2$,
$P(1 \mid C)=0.5$ respectively.

Particle Filtering

1. First, we propose assignments aka particles to each hidden state by sampling from the transition probabilities.
2. Second, we weight each assignment by the emission probabilities.
3. Third, we resample new assignments from the particles based on the weight distributions.

Particle Filtering

3 Third, we resample new assignments from the particles based on the weight distributions.

Example: suppose we have 3 particles of $q_{1}=H, q_{1}=H, q_{1}=C$, and we have the observation $o_{1}=1$.
Then the weights of our particles are $P(1 \mid H)=0.2, P(1 \mid H)=0.2$, $P(1 \mid C)=0.5$ respectively.

Now to resample, we have the distribution:

- $P\left(q_{1} \rightarrow H\right)=\frac{0.2}{0.2+0.2+0.5}$
- $P\left(q_{1} \rightarrow H\right)=\frac{0.2}{0.2+0.2+0.5}$
- $P\left(q_{1} \rightarrow C\right)=\frac{0.5}{0.2+0.2+0.5}$

Notice how even though our initial proposal had a higher chance to pick $q_{1}=H$, we now have a higher chance to get $q_{1}=C$!
The resampling takes into account the observations!

Particle Filtering

Suppose after all that, we have new assignments for our 3 particles: $q_{1}=C, q_{1}=C, q_{1}=H \ldots$
And repeated the propose process for q_{2} to get: $\left(q_{1}, q_{2}\right)=(C, H)$; $\left(q_{1}, q_{2}\right)=(C, C) ;\left(q_{1}, q_{2}\right)=(H, C)$ with $o_{2}=3 \ldots$

Particle Filtering

And repeated the propose process for q_{2} to get: $\left(q_{1}, q_{2}\right)=(C, H)$; $\left(q_{1}, q_{2}\right)=(C, C) ;\left(q_{1}, q_{2}\right)=(H, C)$ with $o_{2}=3 \ldots$

The weight process then assigns the particles:

- $\left(q_{1}, q_{2}\right)=(C, H): P(3 \mid H)=0.4$
- $\left(q_{1}, q_{2}\right)=(C, C): P(3 \mid C)=0.1$
- $\left(q_{1}, q_{2}\right)=(H, C): P(3 \mid C)=0.1$

Particle Filtering

The weight process then assigns the particles:

- $\left(q_{1}, q_{2}\right)=(C, H): P(3 \mid H)=0.4$
- $\left(q_{1}, q_{2}\right)=(C, C): P(3 \mid C)=0.1$
- $\left(q_{1}, q_{2}\right)=(H, C): P(3 \mid C)=0.1$

And the resample process then samples from the above 3 options, that is:

- $\left(q_{1}, q_{2}\right)=(C, H)$ has a $4 / 6$ chance of being picked.
- The other two each have a $1 / 6$ chance of being picked.

And so a possible resampling result might yield the particles: $\left(q_{1}, q_{2}\right)=(C, H),(C, H)$, and (C, C).
And you'd repeat the process with $q_{3} \ldots$

