
Bayesian networks: overview



• In this module, I’ll introduce Bayesian networks, a new framework for modeling.
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• We have talked about two types of variable-based models.

• In constraint satisfaction problems, the objective is to find the maximum weight assignment given a factor graph.

• In Markov networks, we use the factor graph to define a joint probability distribution over assignments and compute marginal probabilities.

• Now we will present Bayesian networks, where we still define a probability distribution using a factor graph, but the factors have special
meaning.

• Bayesian networks were developed by Judea Pearl in the 1980s, and have evolved into the more general notion of generative modeling that
we see today.



Markov networks versus Bayesian networks

Both define a joint probability distribution over assignments
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Markov networks Bayesian networks

arbitrary factors local conditional probabilities

set of preferences generative process
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• Before defining Bayesian networks, it is helpful to compare and contrast Markov networks and Bayesian networks at a high-level.

• Both define a joint probability distribution over assignments, and in the end, both are backed by factor graphs.

• But the way each approaches modeling is different. In Markov networks, the factors can be arbitrary, so you should think about being able
to write down an arbitrary set of preferences and constraints and just throw them in. In the object tracking example, we slap on observation
and transition factors.

• Bayesian networks require the factors to be a bit more coordinated with each other. In particular, they should be local conditional probabilities,
which we’ll define in the next module.

• We should think about a Bayesian network as defining a generative process represented by a directed graph. In the object tracking example,
we think of an object as moving from position Hi−1 to position Hi and then yielding a noisy sensor reading Ei.



Applications

Topic modeling: unsupervised discovery of topics in text

Vision as inverse graphics: recover semantic description given image

Error correcting codes: recover data over a noisy channel

DNA matching: identify people based on relatives
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• There are a huge number of applications of Bayesian networks, or more generally, generative models. One application is topic modeling, where
the goal is to discover the hidden structure in a large collection of documents. For example, Latent Dirichlet Allocation (LDA) posits that
each document can be described by a mixture of topics.

• Another application is a very different take on computer vision. Rather than modeling the bottom-up recognition using neural networks, which
is the dominant paradigm today, we can encode the laws of physics into a graphics engine which can generate an image given a semantic
description of an object. Computer vision is ”just” the inverse problem: given an image, recover the hidden semantic information (e.g.,
objects, poses, etc.). While the ”vision as inverse graphics” perspective hasn’t been scaled up beyond restricted environemnts, the idea seems
tantalizing.

• Switching gears, in a wireless or Ethernet network, nodes must send messages (a sequence of bits) to each other, but these bits can get
corrupted along the way. The idea behind error correcting codes (Low-Density Parity Codes in particular) is that the sender also sends a set
of random parity checks on the data bits. The receiver obtains a noisy version of the data and parity bits. A Bayesian network can then be
defined to relate the original bits to the noisy bits, and the receiver can use inference (usually loopy belief propagation) to recover the original
bits.

• The final application that we’ll discuss is DNA matching. For example, Bonaparte is a software tool developed in the Netherlands that uses
Bayesian networks to match DNA based on a candidate’s family members. There are two use cases, the first one is controversial and the
second one is grim. The first use case is in forensics: given DNA found at a crime site, even if the suspect’s DNA is not in the database, one
can match it against the family members of a suspect, where the Bayesian network is structured according to the family tree of the suspect
and models the relationship between the family members’s DNA using Mendelian inheritance. While this technology has been used to solve
crime cases, there are some tricky ethical concerns about this expanded DNA matching, especially since an individual’s decision to release
their own DNA can impact the privacy of family members. The second use case is in disaster victim identification. After a big airplane crash
(e.g., Malaysia Airlines flight MH17 in the Ukraine in 2014), a victim’s DNA found at the crash site can be matched against their family
members using the same mechanism above to identify the victim.



Why Bayesian networks?

• Handle heterogenously missing information, both at training and test time

• Incorporate prior knowledge (e.g., Mendelian inheritance, laws of physics)

• Can interpret all the intermediate variables

• Precursor to causal models (can do interventions and counterfactuals)
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• These days, it’s hard not to think about problems exclusively through the lens of standard supervised learning such as training a deep neural
network on a pile of data.. Bayesian networks operate in a different paradigm which offers several advantages that are important to understand
so that you can pick the right tool for the task.

• First, in traditional machine learning (e.g., linear models or neural networks), the input is usually of a fixed size (homogenous). With Bayesian
networks, the types of inputs one can handle can be hetereogenous (e.g., missing features), both during training and test times.

• Second, Bayesian networks offer most leverage when you have rich prior knowledge (e.g., Mendelian inheritance, laws of physics). This
allows one to often learn from very few samples and extrapolate beyond distribution of the training data. In contrast, deep neural networks
generallly requires much more data to be effective.

• Third, because Bayesian networks are often carefully constructed based on prior knowledge, the variables in the Bayesian network are
interpretable (more so that hidden units in a neural network), and you can ask questions about any of them via the laws of probability.

• Finally, Bayesian networks are an important precursor to developing causal models, which allow us to answer questions about interventions
(”what would happen if we gave this drug to this patient?”) and counterfactuals (”what would have happened if we had given this drug?”).
These are extremely tricky and deep questions that standard machine learning or any methods that only view the world through prediction
are unable to answer. For an easy introduction to some of these ideas, check out Judea Pearl’s The Book of Why.

• Finally, Bayesian networks aren’t suitable in every situation. In many vision, speech, and language problems, we have large datasets, mostly
care about prediction, and it is extremely hard to incorporate prior knowledge about these very complex domains. In such cases, Bayesian
networks have largely been supplanted with deep learning.



Roadmap

Modeling

Definitions

Probabilistic programming

Inference

Probabilistic inference

Forward-backward

Particle filtering

Learning

Supervised learning

Smoothing

EM algorithm
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• In the remaining modules on Bayesian networks, I will first introduce a formal definition of Bayesian networks and explore some of its formal
properties. Then I’ll talk about probabilistic programming, a way to define Bayesian networks as (probabilistic) programs, which will provide
a new perspective that allows to develop more powerful models.

• Then we turn to inference, which is what we do once we have a Bayesian network. We first define probabilistic inference, the problem of
computing conditional and marginal probabilities and reduce this to the problem of inference in Markov networks. We then specialize to Hidden
Markov Models (HMMs), an important special case of Bayesian networks, and show that the forward-backward algorithm can leverage the
graph structure and do exact inference efficiently. Then we introduce particle filtering, which allows us to do approximate inference but scale
up to HMMs where variables have larger domains.

• Finally, we talk about learning Bayesian networks from data. First we show how to do supervised learning, where all the variables are
observed, which turns out to be very easy (just count and normalize). Then we show how to guard against overfitting in Bayesian networks
by smoothing. Finally, we show how to do learning where some of the variables are unobserved using the EM algorithm.



Review: probability

Random variables: sunshine S ∈ {0, 1}, rain R ∈ {0, 1}

Joint distribution (probabilistic database):

P(S,R) =

s r P(S = s,R = r)

0 0 0.20

0 1 0.08

1 0 0.70

1 1 0.02

Marginal distribution:

(aggregate rows)

P(S) =
s P(S = s)

0 0.28

1 0.72

Conditional distribution:

(select rows, normalize)

P(S | R = 1) =

s P(S = s | R = 1)

0 0.8

1 0.2
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• Before introducing Bayesian networks, let’s review some basic probability. We start with an example about the weather. Suppose we have two
boolean random variables, S and R representing whether there is sunshine and whether there is rain, respectively. Think of an assignment to
(S,R) as representing a possible state of the world.

• The joint distribution specifies a probability for each assignment to (S,R) (state of the the world). We use lowercase letters (e.g., s and r)
to denote values and uppercase letters (e.g., S and R) to denote random variables. Note that P(S = s,R = r) is a probability (a number)
while P(S,R) is a distribution (represented by a table of probabilities). We don’t know what state of the world we’re in, but we know what
the probabilities are (there are no unknown unknowns). Think of the joint distribution as one giant (probabilitsic) database that contains full
information about how the world works.

• Sometimes, we might only be interested in a subset of the variables, e.g., sunshine S. From the joint distribution, we can derive a marginal
distribution over that. In the case of S, we get this by summing the probabilities of the rows in the joint distribution table that share the
same value of S. The interpretation is that we are interested in (the marginal probability of) S. We don’t explicitly care about R, but we
still need to take into account R’s effect on S. We say in this case that R is marginalized out.

• Sometimes, we might observe evidence; for example, suppose we know that there’s rain (R = 1). Again from the joint distribution, we
can derive a conditional distribution of the remaining variables (S) given this evidence R = 1. We do this by selecting rows of the table
matching the condition and then normalizing the remaining probabilities so that they sum to 1. Note that this normalization constant is
exactly P(R = 1).



Review: probability

Variables: S (sunshine), R (rain), T (traffic), A (autumn)

Joint distribution (probabilistic database):

P(S,R, T,A)

Marginal conditional distribution (probabilistic inference):

• Condition on evidence (traffic, autumn): T = 1, A = 1

• Interested in query (rain?): R

P( R︸︷︷︸
query

| T = 1, A = 1︸ ︷︷ ︸
condition

)

(S is marginalized out)

CS221 14



• Let us augment our running example with two other random variables, T (whether there is traffic) and A (whether it’s autumn).

• We have a joint distribution, which again can be thought of as a probabilistic database that tells us how the world works.

• Probabilistic inference is the process of answering questions against this database. In general, we can both condition on evidence and be
interested in a subset of the remaining variables at the same time.

• For example, we might condition on there being traffic and the fact that it’s autumn.

• And we might be interested in whether there is rain (called the query variable), marginalizing out sunshine.

• The set of conditioning variables, query variables, and variables that are marginalized out should form a partitioning of all the variables.



A puzzle

Problem: earthquakes, burglaries, and alarms

Earthquakes and burglaries are independent events (probability ε).

Either will cause an alarm to go off.

Suppose you get an alarm.

Does hearing that there’s an earthquake increase, decrease, or keep constant the
probability of a burglary?

Joint distribution:

P(E,B,A)

Questions:

P(B = 1 | A = 1) ? P(B = 1 | A = 1, E = 1)
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• Let’s consider a classic puzzle, which we will tackle with Bayesian networks. Suppose that in the world, earthquakes and burglaries are
independent (and hopefully rare) events, and for the sake of simplicity, assume that each one has a probability ε (say 0.05) of happening. You
have installed an alarm that will notify you if either one happens.

• Now suppose you are away on vacation and you get an alarm notification on your phone. You would expect at this point that the probability
of your home being burglarized has gone up. But suppose then you see breaking news saying that there was an earthquake near your home.
How does that change your beliefs about the burglary?

• One could try to intuit the answer, but this is risky because sometimes the right answer is counterintuitive. In this case, you might think since
earthquakes and burglaries are independent, that the probability shouldn’t change. But that would be wrong. So let’s use Bayesian networks
instead to perform this type of reasoning under uncertainty in a principled way.

• Let us try to write down this question using the language of probability. The first step is to always figure out the variables of interest, which
in this case are earthquake E, burglary B, and alarm A.

• We then have a joint distribution over these variables, which we will define later. But first the questions. We are interested in comparing the
probability of a burglary given an alarm only versus given alarm and earthquake.



Bayesian network (alarm)

B E

A

b p(b)

1 ε

0 1− ε

e p(e)

1 ε

0 1− ε

b e a p(a | b, e)
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

p(b) = ε · [b = 1] + (1− ε) · [b = 0]

p(e) = ε · [e = 1] + (1− ε) · [e = 0]

p(a | b, e) = [a = (b ∨ e)]

P(B = b, E = e,A = a)
def
= p(b)p(e)p(a | b, e)
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• Now let us define the joint distribution. Recall the first step was just to define the three variables, B (burglary), E (earthquake), and A
(alarm).

• Second, we connect up the variables to model the dependencies. Unlike in factor graphs, these dependencies are represented as directed
edges. You can intuitively think about the directionality as representing causality, though what this actually means is a more complex issue
and beyond the scope of this module.

• Third, for each variable, we specify a local conditional distribution of that variable given its parent variables. In this example, B and E
have no parents while A has two parents, B and E. This local conditional distribution is what governs how a variable is generated.

• Fourth, we define the joint distribution over all the random variables as the product of all the local conditional distributions.

• Note that we write the local conditional distributions using p, while P is reserved for the joint distribution over all random variables, which is
defined as the product.



Probabilistic inference (alarm)

Joint distribution

b e a P(B = b, E = e,A = a)

0 0 0 (1− ε)2

0 0 1 0

0 1 0 0

0 1 1 (1− ε)ε
1 0 0 0

1 0 1 ε(1− ε)
1 1 0 0

1 1 1 ε2

Questions:

P(B = 1) = ε(1− ε) + ε2 = ε

P(B = 1 | A = 1) = ε(1−ε)+ε2

ε(1−ε)+ε2+(1−ε)ε = 1
2−ε

P(B = 1 | A = 1, E = 1) = ε2

ε2+(1−ε)ε = ε

[demo]

News flash: earthquakes decrease burglarlies!*

*This is not a causal statement!
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• We multiply all the local conditional distributions together to produce the joint distribution. Recall this is the probabilistic that is the source
of all truth, and from it we can answer all sorts of questions.

• Let us start with the simplest query, P(B = 1): what is the probability of burglary without any evidence? We can sum up all the rows with
B = 1 to get ε.

• Now suppose we hear the alarm A = 1. Let us first filter out all the rows where A = 1 does not hold. Then we look at the sum of the
probabilities of rows where B = 1 over the sum of all the probabilities. The resulting probability of burglary is now P(B = 1 | A = 1) = 1

2−ε .

• Now let us condition on alarm (A = 1) and earthquake (E = 1). Filter out rows that don’t satisfy the condition, and look at the fraction of
probabilities of remaining rows on B = 1. The resulting probability of burglary goes down to P(B = 1 | A = 1, E = 1) = ε again.

• So in the end, observing that there’s an earthquake does actually decrease the probability of the burglary. This might be counterintuitive
because we said that burglaries and earthquakes are independent. But it’s important to not interpret this causally. Creating more earthquakes
clearly will not make the burglars disappear. When dealing with slippery questions such as these, we need a sound mathematical framework
like Bayesian networks to ensure that we get the right answers.



Explaining away

B E

A

Key idea: explaining away

Suppose two causes positively influence an effect. Conditioned on the effect, further
conditioning on one cause reduces the probability of the other cause.

P(B = 1 | A = 1, E = 1) < P(B = 1 | A = 1)

Note: happens even if causes are independent!
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• This last phenomenon is so important for reasoning under uncertainty that it has a special name: explaining away. Suppose we have two
cause variables B and E, which are parents of an effect variable A. Futher, assume the causes influence the effect positively (e.g., through
the OR function).

• Let us condition on the evidence A = 1. We are trying to seek an explanation for A = 1 (what caused the alarm to go off?).

• Further conditioning on one of the causes (E = 1) decreases the probability of the other cause, because E = 1 alone explains away A = 1,
and there’s no more pressure on B.

• Note that in our setting, the probability of B = 1 returns to the original P(B = 1), but this need not be the case in general.

• Conditioning on A = 1 is important for explaining away. If you didn’t, then the probability of B = 1 would not change. You can verify for
yourself that P(B = 1 | E = 1) = P(B = 1), which just follows from the definition of B and E being independent.



Medical diagnosis

Problem: cold or allergies?

You are coughing and have itchy eyes. Do you have a cold?

C A

H I

Random variables:

cold C, allergies A, cough H, itchy eyes I

Joint distribution:

P(C = c, A = a,H = h, I = i) = p(c)p(a)p(h | c, a)p(i | a)

Questions:

P(C = 1 | H = 1) = 0.28 P(C = 1 | H = 1, I = 1) = 0.13

[demo]
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• Here is another example (a cartoon version of Bayesian networks for medical diagnosis).

• Step 1: identify all the relevant variables.

• Step 2: draw arrows between them, using prior knowledge. Using our simplistic medical knowledge, suppose that a cough can be either
because of a cold or because of allergies, but itchy eyes are generally only caused by allergies.

• Step 3: define a local conditional distribution for each variable.

• Step 4: multiply all the local conditional distributions to form the joint distribution.

• Now we have our probabilistic database and we can ask questions about it. Our motivating question is P(C,A | H = 1, I = 1).

• You can try the demo to get a quantitative answer. Note that P(C = 1 | H = 1) = 0.28, which is another example of explaining away.
Observing itchy eyes provides evidence for A, which explains away the cough (H = 1), resulting in a reduced probability of cold (C = 1).

• Note that even qualitatively reasoning about even a four-node Bayesian network can be quite subtle, let alone getting quantitative answers on
large Bayesian networks. But we can rest at ease since the laws of probability make sure that all these calculations are internally consistent
provided we defined the Bayesian network correctly (which in practice is an admittedly hard modeling task).



Bayesian network (definition)

Definition: Bayesian network

Let X = (X1, . . . , Xn) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distri-
bution over X as a product of local conditional distributions, one for each node:

P(X1 = x1, . . . , Xn = xn)
def
=

n∏
i=1

p(xi | xParents(i))
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• Without further ado, let’s define a Bayesian network formally. A Bayesian network defines a joint distribution over a set of random variables.

• Second, we have a directed acyclic graph over the variables that captures the qualitative dependencies.

• Third, we specify a local conditional distribution for each variable Xi, which is a function that specifies a distribution over Xi given an
assignment xParents(i) to its parents in the graph (possibly no parents).

• Finally, the joint distribution is simply defined to be the product of all of the local conditional distributions.

• Notationally, we use lowercase p (in p(xi | xParents(i))) to denote a local conditional distribution, and uppercase P to denote the induced joint
distribution over all variables. While we will see that the two coincide, it is important to keep these things separate in your head!



Probabilistic inference (definition)

Input

Bayesian network: P(X1, . . . , Xn)

Evidence: E = e where E ⊆ X is subset of variables

Query: Q ⊆ X is subset of variables

Output

P(Q | E = e) P(Q = q | E = e) for all values q

Example: if coughing and itchy eyes, have a cold?

P(C | H = 1, I = 1)
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• Now given a Bayesian network representing a probabilistic database, we can answer questions on it.

• In particular, we are given a set of evidence variables E and values e. We are also given a set of query variables Q. What a probabilistic
inference algorithm should output given this is the marginal conditional distribution P(Q | E = e).

• Note that this output is a table that specifies a probability for each assignment of values to Q.

• So far, we have shown examples of probabilistic inference on small Bayesian networks. The bad news is that in general, answering arbitrary
probabilistic inference questions on arbitrary Bayesian networks is computationally intractable. The good news it that the core probabilistic
inference in Bayesian networks is identical to Markov networks (which we will see later).



Summary

B E

A

• Random variables capture state of world

• Directed edges between variables represent dependencies

• Local conditional distributions ⇒ joint distribution

• Probabilistic inference: ask questions about world

• Captures reasoning patterns (e.g., explaining away)
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• In summary, we have introduced Bayesian networks.

• It’s important to think about an assignment to random variables as capturing the state of the world.

• Directed edges represent qualitative (sometimes causal) dependencies.

• Quantitatively, we specify a local conditional distribution for each variable conditioned on its parents, and multiply them together to get a
joint distribution.

• Now we have our probabilistic database on which we can ask all sorts of questions, marginal conditional probabilities.

• Hopefully through the alarm and medical diagnosis examples, you are able to appreciate that the framework can capture intuitive or counter-
intuitive reasoning patterns such as explaining away in a mathematically sound way so you can sleep well at night.



Probabilistic programs

B E

A

Joint distribution:

P(B = b, E = e,A = a) = p(b)p(e)p(a | b, e)

Probabilistic program: alarm

B ∼ Bernoulli(ε)

E ∼ Bernoulli(ε)

A = B ∨ E

def Bernoulli(epsilon):

return random.random() < epsilon

Key idea: probabilistic program

A randomized program that sets the random variables.

CS221 32



• Recall that a Bayesian network is given by (i) a set of random variables, (ii) directed edges between those variables capturing qualitative
dependencies, (iii) local conditional distributions of each variable given its parents which captures these dependencies quantitatively, and
(iv) a joint distribution which is produced by multiplying all the local conditional distributions together. Now the joint distribution is your
probabilistic database, which you can answer all sorts of questions on it using probabilistic inference.

• There is another way of writing down Bayesian networks other than graphically or mathematically, and that is as a probabilistic program.

• Let’s go through the alarm example. We can sample B and E independently from a Bernoulli distribution with parameter ε, which produces
1 (true) with probability ε. Then we just set A = B ∨ E.

• In general, a probabilistic program is a randomized program that invokes a random number generator. Executing this program will assign
values to a collection of random variables X1, . . . , Xn; that is, generating an assignment.

• We then define probability under the joint distribution of an assignment to be exactly the probability that the program generates an assignment.

• While you can run the probabilistic program to generate samples, it’s important to think about it as a mathematical construct that is used
to define a joint distribution.



Probabilistic program: example

Probabilistic program: object tracking

X0 = (0, 0)

For each time step i = 1, . . . , n:

if Bernoulli(α):

Xi = Xi−1 + (1, 0) [go right]

else:

Xi = Xi−1 + (0, 1) [go down]

(press ctrl-enter to save)

Run

X1 X2 X3 X4 X5
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• This is a more interesting example showcasing the convenience of probabilistic programming.

• In this program, we’ll use a for loop, which allows us to compactly specify the distribution over an unboundedly large (n) set of variables.

• In the object tracking example, we define a program that generates the trajectory of an object. At each time step i, we take the previous
Xi−1 location and move it right with probability α and down with probability 1− α, yielding Xi.

• This program is a full specification of the local conditional distribution and thus the joint distribution!

• Try clicking [Run] to run the program. Each time a new assignment of (X1, . . . , Xn) is chosen, and recall that the probability of the program
generating an assignment is the probability under the joint distribution by definition.

• We can also draw the Bayesian network, which allows us to visualize the dependencies. Here, each Xi only depends on Xi−1. This chain-
structured Bayesian network is called a Markov model. However, note that the graphical representation doesn’t specify the local conditional
distributions.



Probabilistic inference: example

Question: what are possible trajectories given evidence X10 = (8, 2)?

(press ctrl-enter to save)

Run
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• Having used the program to define a joint distribution, we can now answer questions about that distribution.

• For example, suppose that we observe evidence X10 = (8, 2). What is the distribution over the other variables?

• In the demo, we condition on the evidence and observe the distribution over all trajectories, which are constrained to go through (8, 2) at
time step 10.



Application: language modeling

Can be used to score sentences for speech recognition or machine translation

Probabilistic program: Markov model

For each position i = 1, 2, . . . , n:

Generate word Xi ∼ p(Xi | Xi−1)

X1 X2 X3 X4

Wreck a nice beach
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• Now I’m going to quickly go through a set of examples of Bayesian networks or probabilistic programs and talk about the applications they
are used for.

• A natural language sentence can be viewed as a sequence of words, and a language model assigns a probability to each sentence, which
measures the ”goodness” of that sentence.

• Markov models and higher-order Markov models (called n-gram models in NLP), were the dominant paradigm for language modeling before
deep learning, and for a while, they outperformed neural language models since they were computationally much easier to scale up.

• While they could be used to generate text unconditionally, they were often used in the context of a speech recognition or machine translation
system to score the fluency of the output.

• A Markov model generates each word given the previous word according to some local conditional distribution p(Xi | Xi−1) which we’re not
specifying right now.



Application: object tracking

Probabilistic program: hidden Markov model (HMM)

For each time step t = 1, . . . , T :

Generate object location Ht ∼ p(Ht | Ht−1)

Generate sensor reading Et ∼ p(Et | Ht)

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

(3,1) (3,2)

4 5

Inference: given sensor readings, where is the object?
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• Markov models are limiting because they do not have a way of talking about noisy evidence (sensor readings). They can be extended to
hidden Markov models, which introduce a parallel sequence of observation variables.

• For example, in object tracking, Ht denotes the true object location, and Et denotes the noisy sensor reading, which might be (i) the location
Ht plus noise, or (ii) the distance from Ht plus noise, depending on the type of sensor.

• In speech recognition, Ht would be the phonemes or words and Et would be the raw acoustic signal.



Application: multiple object tracking

Probabilistic program: factorial HMM

For each time step t = 1, . . . , T :

For each object o ∈ {a, b}:
Generate location Ho

t ∼ p(Ho
t | Ho

t−1)

Generate sensor reading Et ∼ p(Et | Ha
t , H

b
t )

Ha
1 Ha

2 Ha
3 Ha

4

Hb
1 Hb

2 Hb
3 Hb

4

E1 E2 E3 E4
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• An extension of an HMM, called a factorial HMM, can be used to track multiple objects.

• We assume that each object moves independently according to a Markov model, but that we get one sensor reading which is some noisy
aggregated function of the true positions.

• For example, Et could be the set {Ha
t , H

b
t }, which reveals where the objects are, but doesn’t say which object is responsible for which element

in the set.



Application: document classification

Probabilistic program: naive Bayes

Generate label Y ∼ p(Y )

For each position i = 1, . . . , L:

Generate word Wi ∼ p(Wi | Y )

Y

W1 W2 . . . WL

travel

beach Paris

Inference: given a text document, what is it about?
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• Naive Bayes is a very simple model which is often used for classification. For document classification, we generate a label and all the words
in the document given that label.

• Note that the words are all generated independently, which is not a very realistic model of language, but naive Bayes models are surprisingly
effective for tasks such as document classification.

• These types of models are traditionally called generative models as opposed to discriminative models for classification. Rather than thinking
about how you take the input and produce the output label (e.g., using a neural network), you go the other way around: think about how
the input is generated from the output (which is usually the purer, more structured form of the input).

• One advantage of using Naive Bayes for classification is that ”training” is extremely easy and fast and just requires counting (as opposed to
performing gradient descent).



Application: topic modeling

Probabilistic program: latent Dirichlet allocation

Generate a distribution over topics α ∈ RK

For each position i = 1, . . . , L:

Generate a topic Zi ∼ p(Zi | α)
Generate a word Wi ∼ p(Wi | Zi)

α

Z1 Z2 . . . ZL

W1 W2 . . . WL

{travel:0.8,Europe:0.2}

travel Europe

beach Euro

Inference: given a text document, what topics is it about?
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• A more sophisticated model of text is Latent Dirichlet Allocation (LDA), which allows a document to not just be about one topic or class
(which was true in naive Bayes), but about multiple topics.

• Here, the distribution over topics α is chosen per document from a Dirichlet distribution. Note that α is a continuous-valued random variable.
For each position, we choose a topic according to that per-document distribution and generate a word given that topic.

• Latent Dirichlet Alloction (LDA) has been very infuential for modeling not only text but images, videos, music, etc.; any sort of data with
hidden structure. It is very related to matrix factorization.



Application: medical diagnosis

Probabilistic program: diseases and symptoms

For each disease i = 1, . . . ,m:

Generate activity of disease Di ∼ p(Di)

For each symptom j = 1, . . . , n:

Generate activity of symptom Sj ∼ p(Sj | D1:m)

Pneumonia Cold Malaria

Fever Cough Vomit

1 0 0

1 1 0

Inference: If a patient has some symptoms, what diseases do they have?
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• We already saw a special case of this model. In general, we would like to diagnose many diseases and might have measured many symptoms
and vitals.



Application: social network analysis

Probabilistic program: stochastic block model

For each person i = 1, . . . , n:

Generate person type Hi ∼ p(Hi)

For each pair of people i 6= j:

Generate connectedness Eij ∼ p(Eij | Hi, Hj)

H1

E12 E13

H2 E23 H3

politician

scientist scientist

1 0

1

Inference: Given a social network graph, what types of people are there?

CS221 50



• One can also model graphs such as social networks. A very naive-Bayes-like model is that each node (person) has a ”type”. Whether two
people interact with each other (there is an edge beween the two people) is determined solely by their types and random chance.

• Note: there are extensions called mixed membership models which, like LDA, allow each person to have multiple types.



Summary

H

E

• Probabilistic program specifies a Bayesian network

• Many different types of models

• Common paradigm: come up with stories of how the quantities of interest (output)
generate the data (input)

• Opposite of how we normally do classification!
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• In summary, we’ve seen how we can define Bayesian networks (and therefore joint distributions) by writing down probabilistic programs.

• Using this powerful tool, we then did a whirlwind tour of lots of probabilistic programs that exist in the literature (though not often introduced
under this general framework).

• The common theme of these probabilistic programs is that each attempts to produce stories of how certain quantities of interest H (e.g.,
actual location of an object) generate (or give rise to) observations E (e.g., usually noisy verions).

• After defining such a model, one can do probabilistic inference to compute P(H | E = e). Note that we can see how Bayesian networks allow
us to handle heterogenous inputs (e.g., missing information). We can simply condition on partial evidence.

• Bayesian networks therefore provide quite a different paradigm compared to normal classification (e.g., neural networks). You have to think
about going from the output to the input rather than input to output, which takes some getting used to.
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Review: Bayesian network

C A

H I

Random variables:

cold C, allergies A, cough H, itchy eyes I

Joint distribution:

P(C = c, A = a,H = h, I = i) = p(c)p(a)p(h | c, a)p(i | a)

Definition: Bayesian network

Let X = (X1, . . . , Xn) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distri-
bution over X as a product of local conditional distributions, one for each node:

P(X1 = x1, . . . , Xn = xn)
def
=

n∏
i=1

p(xi | xParents(i))
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• Recall that a Bayesian network is given by (i) a set of random variables, (ii) directed edges between those variables capturing qualitative
dependencies, (iii) local conditional distributions of each variable given its parents which captures these dependencies quantitatively, and (iv)
a joint distribution which is produced by multiplying all the local conditional distributions together.



Review: probabilistic inference

C A

H I

Question: P(C | H = 1, I = 1)

Input

Bayesian network: P(X1, . . . , Xn)

Evidence: E = e where E ⊆ X is subset of variables

Query: Q ⊆ X is subset of variables

Output

P(Q | E = e) P(Q = q | E = e) for all values q
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• Given the joint distribution representing your probabilistic database, you can answer all sorts of questions on it using probabilistic inference.

• Given a set of evidence variables and values, a set of query variables, we want to compute the probability of the query variables given the
evidence, marginalizing out all other variables.



Reduction to Markov networks

C A

H I

C A

H I

p(c) p(a)

p(h | c, a) p(i | a)

P(C = c, A = a,H = h, I = i) = 1
Z p(c)p(a)p(h | c, a)p(i | a)

Bayesian network = Markov network with normalization constant Z = 1

Reminder: single factor that connects all parents!
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• Our overarching strategy for performing inference in Bayesian networks is to convert them into Markov networks.

• Recall that the joint distribution is just the product of all the local conditional distributions. The local conditional distributions (e.g., p(a | b, e))
are all non-negative so they can be interpreted as simply factors in a factor graph.

• Recall that a Markov network defines the joint distribution as the product of all the factors divided by some normalization constant Z. But
in this case, Z = 1 because the factors are local conditional distributions of a Bayesian network! Put it another way, Bayesian networks are
just instances of Markov networks where the normalization constant Z = 1.

• It’s important to remember that there is a single factor that connects all the parents. Don’t let the directed graph in the Bayesian network
deceive you into thinking that there are two factors, one per arrow, which is a common mistake.

• Now we can run any inference algorithm for Markov networks (e.g., Gibbs sampling) on this so-called Markov network and obtain quantities
such as P(H = 1). But there is one important thing that’s missing, which is the ability to condition on evidence...



Conditioning on evidence

C A

H I

C A

p(c) p(a)

p(h = 1 | c, a)
p(i = 1 | a)

Markov network:

P(C = c, A = a | H = 1, I = 1) = 1
Z p(c)p(a)p(h = 1 | c, a)p(i = 1 | a)

Bayesian network with evidence = Markov network with Z = P(H = 1, I = 1)

Solution: run any inference algorithm for Markov networks (e.g., Gibbs sampling)!

[demo]
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• Suppose we condition on evidence H = 1 and I = 1.

• We can define a new Markov network over the remaining variables (C and A) by simply plugging in the values to H and I. The normalization
constant Z is the sum over all values of C and A, which is no longer 1, but rather the probability of the evidence P(H = 1, I = 1).

• To understand why this relationship holds, recall that the desired conditional probability is the joint probability over the marginal probability.
The factors simply represent the joint probability, and thus the normalization constant must be the marginal probability.

• Now we can again run any inference algorithm for Markov networks (e.g., Gibbs sampling), and this allows us to do probabilistic inference in
any Bayesian network.

• In the demo, we will run Gibbs sampling to compute P(C = 1 | H = 1, I = 1), and we see that it converges to the right answer (0.13).



Leveraging additional structure: unobserved leaves

C A

H I

Markov network:

P(C = c, A = a, I = i | H = 1) = 1
Z p(c)p(a)p(h = 1 | c, a)p(i | a),

where Z = P(H = 1)

Question: P(C = 1 | H = 1)

Can we reduce the Markov network before running inference?
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• We could stop there, but there are two more ways we can leverage the structure of Bayesian networks to optimize things a bit.

• Suppose we are now just conditioning on H = 1. As before we can form a Markov network over the remaining variables.

• But what if we knew we were only interested in P(C = 1 | H = 1)?

• Is there a way to reduce the size of the Markov network before running inference?



Leveraging additional structure: unobserved leaves

C A

H I

Markov network:

P(C = c, A = a | H = 1)=
∑

i P(C = c, A = a, I = i | H = 1)

=
∑

i
1
Z p(c)p(a)p(h = 1 | c, a)p(i | a)

= 1
Z p(c)p(a)p(h = 1 | c, a)

∑
i p(i | a)

= 1
Z p(c)p(a)p(h = 1 | c, a)

Throw away any unobserved leaves before running inference!
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• The answer is yes.

• Let us try marginalizing out I. We expand using the definition of marginal probability, definition of the Bayesian network, pushing the
∑

i

inwards past factors that don’t depend on i, and noting that
∑

i p(i | a) = 1 by definition of local conditional distributions.

• But if we stare at the last equation, it is what we would have gotten if we had just ignored I in the first place!

• The general principle here is that marginalization of any unobserved leaf node produces 1, and thus all such nodes can be simply ignored.
And we can keep on iterating this until all leaves are observed.

• This is practically very useful because it means that whenever we have a large Bayesian network, we might be able to remove large swaths of
the network.

• This property establishes a bridge between marginalization (algebraic operations, usually involves hard work) with removal (graph operations,
usually more intuitive).



Leveraging additional structure: independence

C A

H I

Markov network:

P(C = c | I = 1)=
∑

a,h P(C = c, A = a,H = h | I = 1)

=
∑

a,h
1
Z p(c)p(a)p(h | c, a)p(i = 1 | a)

=
∑

a
1
Z p(c)p(a)p(i = 1 | a)

= p(c)
∑

a
1
Z p(a)p(i = 1 | a)

= p(c)

Throw away any disconnected components before running inference!
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• There is another type of structure we can exploit, which is not specific to Bayesian networks, but shows up generally in Markov networks.

• Suppose we now condition on I = 1. Let us expand the marginal probability into the joint probability, expand into the local conditional
probabilities, marginalize out the unobserved leaf H using the same idea we just discussed,

• Now at this point, C is completely disconnected from A and I. Algebraically, we can pull p(c) out of the expression.

• We have this mess involving a and i, but this quantity does not depend on c so it is a constant. In this case, we know this constant must be
1 because both p(c) and the LHS are probability distributions.

• So we can throw away any disconnected components. Note that it is advantageous to do this after removing all unobserved leaves, because
removing those leaves can help disconnect the graph, as it did in this example.

• Now we have a Markov network, and we would run a standard inference algorithm on it. But in this case, it only has one factor which is
already a local probability distribution, so we’re done.



Summary

C A

H I

• Condition on evidence (e.g., I = 1)

• Throw away unobserved leaves (e.g., H)

• Throw away disconnected components (e.g., A and I)

• Define Markov network out of remaining factors

• Run your favorite inference algorithm (e.g., manual, Gibbs sampling)
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• In summary, we tackled the problem of how to perform probabilistic inference in Bayesian networks, by reducing the problem to that of
inference in Markov networks.

• To prepare the Markov network, we condition on the evidence (substitute the values into the factors), throw away any unobserved leaves, and
throw away any disconnected components.

• Then we just define the Markov network over the remaining factors. If the resulting Markov network is small enough, we can do inference
manually. Otherwise, we can run an algorithm like Gibbs sampling.
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Hidden Markov models for object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
H

i

H1 H2 H3

E1 E2 E3

start transition emission

1/3

1/3

1/3

H1

Hi−1

1/4

1/2

1/4

Hi

Hi

1/4

1/2

1/4

Ei

h1 p(h1)

0 1/3

1 1/3

2 1/3

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

ei p(ei | hi)

hi − 1 1/4

hi 1/2

hi + 1 1/4

P(H = h,E = e) = p(h1)︸ ︷︷ ︸
start

n∏
i=2

p(hi | hi−1)︸ ︷︷ ︸
transition

n∏
i=1

p(ei | hi)︸ ︷︷ ︸
emission
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• Let us revisit our object tracking example, now through the lens of HMMs. Recall that each time i, an object is at a location Hi, and what
we observe is a noisy observation Ei. The goal is to infer where the object is / was.

• We define a probabilistic story as follows: An object starts at H1 uniformly drawn over all possible locations.

• Then at each subsequent time step, the object transitions from the previous time step, keeping the same location with 1/2 probability, and
moves to an adjacent location each with 1/4 probability. For example, if p(h3 = 3 | h2 = 3) = 1/2 and p(h3 = 2 | h2 = 3) = 1/4.

• At each time step, we also emit a sensor reading Ei given the actual location Hi, following the same process as transitions (1/2 probability
of the same location, 1/4 probability of an adjacent location).

• Recall that finally, we define a joint distribution over all the actual locations H1, . . . ,Hn and sensor readings E1, . . . , En by taking the product
of all the local conditional probabilities.



Inference questions

H1 H2 H3

E1 E2 E3

0 2 2

Question (filtering):

P(H2 | E1 = 0, E2 = 2)

Question (smoothing):

P(H2 | E1 = 0, E2 = 2, E3 = 2)

Note: filtering is a special case of smoothing if marginalize unobserved leaves
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• In principle, you could ask any type of questions on an HMM, but there are two common ones: filtering and smoothing.

• Filtering asks for the distribution of some hidden variable Hi conditioned on only the evidence up until that point. This is useful when you’re
doing real-time object tracking, and you can’t see the future.

• Smoothing asks for the distribution of some hidden variable Hi conditioned on all the evidence, including the future. This is useful when
you have collected all the data and want to retrospectively go and figure out what Hi was.

• Note that filtering is a special case of smoothing: if we’re asking for Hi given E1, . . . , Ei, then we can marginalize everything in the future
(since they are just unobserved leaf nodes), reducing the problem to a smaller HMM, where we are smoothing.



Lattice representation

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

• Edge start ⇒ H1 = h1 has weight p(h1)p(e1 | h1)

• Edge Hi−1 = hi−1 ⇒ Hi = hi has weight p(hi | hi−1)p(ei | hi)

• Each path from start to end is an assignment with weight equal to the product of
edge weights

Key: P(Hi = hi | E = e) is the weighted fraction of paths through Hi = hi
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• The forward-backward algorithm is based on a form of dynamic programming.

• To develop this, we consider a lattice representation of HMMs. Consider a directed graph (not to be confused with the HMM) with a start
node, an end node, and a node for each assignment of a value to a variable Hi = v. The nodes are arranged in a lattice, where each column
corresponds to one variable Hi and each row corresponds to a particular value v. Each path from the start to the end corresponds exactly to
a complete assignment to the nodes.

• Each edge has a weight (a single number) determined by the local conditional probabilities (more generally, the factors in a factor graph).

For each edge into Hi = hi , we multiply by the transition probability into hi and emission probability p(ei | hi).

• This defines a weight for each path (assignment) in the graph equal to the joint probability P (H = h,E = e).

• Note that the lattice contains O(n|Domain|) nodes and O(n|Domain|2) edges, where n is the number of variables and |Domain| is the number
of values in the domain of each variable (3 in our example).

• Now comes the key point. Recall we want to compute a smoothing question P(Hi = hi | E = e). This quantity is simply the weighted

fraction of paths that pass through Hi = hi . This is just a way of visualizing the definition of the smoothing question.

• There are an exponential number of paths, so it’s intractable to enumerate all of them. But we can use dynamic programming...



Forward and backward messages

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

Forward: Fi(hi) =
∑

hi−1
Fi−1(hi−1)Weight( Hi−1 = hi−1 , Hi = hi )

sum of weights of paths from start to Hi = hi

Backward: Bi(hi) =
∑

hi+1
Bi+1(hi+1)Weight( Hi = hi , Hi+1 = hi+1 )

sum of weights of paths from Hi = hi to end

Define Si(hi) = Fi(hi)Bi(hi):

sum of weights of paths from start to end through Hi = hi
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• First, define the forward message Fi(v) to be the sum of the weights over all paths from the start node to Hi = v . This can be defined

recursively: any path that goes Hi = hi will have to go through some Hi−1 = hi−1 , so we can sum over all possible values of hi−1.

• Analogously, let the backward message Bi(v) be the sum of the weights over all paths from Hi = v to the end node.

• Finally, define Si(v) to be the sum of the weights over all paths from the start node to the end node that pass through the intermediate node

Xi = v . This quantity is just the product of the weights of paths going into Hi = hi (Fi(hi)) and those leaving it (Bi(hi)).

• This is analogous to factoring: (a+ b)(c+ d) = ab+ ad+ bc+ bd.

• Note: F1(h1) = p(h1)p(e1 = 0 | h1) and Bn(hn) = 1 are base cases, which don’t require the recurrence.



Putting everything together

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

P(Hi = hi | E = e) = Si(hi)∑
v Si(v)

Algorithm: forward-backward algorithm

Compute F1, F2, . . . , Fn

Compute Bn, Bn−1, . . . , B1

Compute Si for each i and normalize

Running time: O(n|Domain|2)

[demo]
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• Now the smoothing question P(Hi = hi | E = e) is just equal to the normalized version of Si.

• The algorithm is thus as follows: for each node Hi = hi , we compute three numbers: Fi(hi), Bi(hi), Si(hi). First, we sweep forward to
compute all the Fi’s recursively. At the same time, we sweep backward to compute all the Bi’s recursively. Then we compute Si by pointwise
multiplication.

• The running time of the algorithm is O(n|Domain|2), which is the number of edges in the lattice.

• In the demo, we are running the variable elimination algorithm, which is a generalization of the forward-backward algorithm for arbitrary
Markov networks. As you step through the algorithm, you can see that the algorithm first computes a forward message F2 and then a
backward message B2, and then it multiplies everything together and normalizes to produce P(H2 | E1 = 0, E2 = 2, E3 = 2). The names
and details don’t match up exactly, so you don’t need to look too closely.

• Implementation note: we technically can normalize Si to get P(Hi | E = e) at the very end but it’s useful to normalize Fi and Bi at each
step to avoid underflow. In addition, normalization of the forward messages yields P(Hi = v | E1 = e1, . . . , Ei = ei) which are exactly the
filtering queries!



Summary

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

• Lattice representation: paths are assignments

• Dynamic programming: compute sums efficiently

• Forward-backward algorithm: compute all smoothing questions, share intermediate com-
putations

CS221 84



• In summary, we have presented the forward-backward algorithm for probabilistic inference in HMMs, in particular smoothing queries.

• The algorithm is based on the lattice representation in which each path is an assignment, and the weight of path is the joint probability.

• Smoothing is just then asking for the weighted fraction of paths that pass through a given node.

• Dynamic programming can be used to compute this quantity efficiently.

• This is formalized using the forward-backward algorithm, which consists of two sets of recurrences.

• Note that the forward-backward algorithm gives you the answer to all the smoothing questions (P(Hi = hi | E = e) for all i), because the
intermediate computations are all shared.
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Review: Hidden Markov models for object tracking

0 1 2 3 4

time i
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H1 H2 H3

E1 E2 E3

start transition emission
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1/3

H1

Hi−1

1/4

1/2

1/4

Hi

Hi

1/4

1/2

1/4

Ei

h1 p(h1)

0 1/3

1 1/3

2 1/3

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

ei p(ei | hi)

hi − 1 1/4

hi 1/2

hi + 1 1/4

P(H = h,E = e) = p(h1)︸ ︷︷ ︸
start

n∏
i=2

p(hi | hi−1)︸ ︷︷ ︸
transition

n∏
i=1

p(ei | hi)︸ ︷︷ ︸
emission
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• Recall that HMM for object tracking.

• Each each point in time, an object has an position Hi, which gives rise to a sensor reading Ei. We start with H1 uniform over positions,
transition from Hi−1 to Hi with 1/2 probability on the same location and 1/4 probability on an adjacent location. We emit the sensor reading
analogously. Multiply everything together to form the joint distribution over locations H1, . . . ,Hn and sensor readings E1, . . . , En.



Review: inference in Hidden Markov models

H1 H2 H3

E1 E2 E3

0 2 2

Filtering questions:

P(H1 | E1 = 0)

P(H2 | E1 = 0, E2 = 2)

P(H3 | E1 = 0, E2 = 2, E3 = 2)

Problem: many possible location values for Hi

Forward-backward is too slow (O(n|Domain|2))...

CS221 90



• Recall that the two common types of inference questions we ask on HMMs are filtering and smoothing.

• Particle filtering, as the name might suggest, performs filtering, so let us focus on that. Filtering asks for the probability distribution over
object location Hi at a current time step i given the past observations E1 = e1, . . . , Ei = ei.

• Last time, we saw that the forward-backward algorithm could already solve this. But it runs in O(n|Domain|2), where |Domain| is the number
of possible values (e.g., locations) that Hi can take on. On this example, Hi ∈ {0, 1, 2} but for real applications, there could easily be
hundreds of thousands of values, not to mention what happens if Hi is continuous. This could be a very large number, which makes the
forward-backward algorithm very slow (even if it’s not exponentially so).

• The motivation of particle filtering is to perform approximate probabilistic inference, and leverages the fact that most of the locations are
very improbable given evidence.

• Particle filtering actually applies to general factor graphs, but we will present them for hidden Markov models for concreteness.



Beam search for HMMs

Idea: keep ≤ K partial assignments (particles)

H1 H2 H3

E1 E2 E3

0 2 2

Algorithm: beam search

Initialize C ← [{}]
For each i = 1, . . . , n:

Extend:

C ′ ← {h ∪ {Hi : v} : h ∈ C, v ∈ Domaini}
Prune:

C ← K particles of C ′ with highest weights

Normalize weights to get approximate P̂(H1, . . . ,Hn | E = e)

Sum probabilities to get any approximate P̂(Hi | E = e)

[demo: beamSearch({K:3})]
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• Our starting point for motivating particle filtering is beam search, an algorithm for finding an approximate maximum weight assignment in
arbitrary constraint satisfaction problems (CSPs).

• Since HMMs are Bayesian networks, which are Markov networks, which have an underlying factor graph, we can simply apply beam search to
HMMs (for now putting aside the goal of finding the maximum weight assignment).

• Recall that beam search maintains a list of candidate partial assignments to the first i variables. There are two phases. In the first phase,
we extend all the existing candidates C to all possible assignments to Hi; this results in K = |Domain| candidates C ′. We then take the
subset of K candidates with the highest weight, where the weight of a partial assignment is simply the product of all the factors (transitions,
emissions) that can be computed on the partial assignment.

• In the demo, we start with partial assignments to H1, whose weights are given by p(h1)p(e1 = 0 | h1). In the next step, we can multiply in
factors p(h2 | h1)p(e2 = 2 | h2), and so on.

• At the very end, we obtain K = 3 complete assignments, each with a weight (equal to the joint probability of the assignment and observations).
We can normalize these weights to form an approximate distribution over all assignments (conditioned on the observations). From here, we
can manually compute any marginal probabilities (e.g., P(H3 = 2 | E = e)) by summing the probabilities of assignments satisfying the given
condition (e.g., H3 = 2).



Beam search problems

Algorithm: beam search

Initialize C ← [{}]
For each i = 1, . . . , n:

Extend:

C ′ ← {h ∪ {Hi : v} : h ∈ C, v ∈ Domaini}
Prune:

C ← K particles of C ′ with highest weights

• Extend: slow because requires considering every possible value for Hi

• Prune: greedily taking best K doesn’t provide diversity

Particle filtering solution (3 steps): propose, weight, resample
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• There are two problems with beam search.

• First, beam search can be slow if Domain is large, since we might have to try every single candidate value hi to assign Hi. In some cases, we
can efficiently generate only the values hi that have nonzero transition probability (p(hi | hi−1 > 0), for example, if we know that hi must
be within a certain distance of hi−1 (can’t teleport). But if we wanted to track the object to high resolution, there might still be too many
values to consider.

• Second, beam search greedily takes the K highest weight candidates at each time step. This could be dangerous, since we might end up with
many assignments that are only slightly different, and not truly representative of the actual distribution. You can think of this as a form of
overfitting.

• Particle filtering addresses both of these problems. It has three steps: propose, which extends the current partial assignment, and reweight +
resample, which redistributes resources on the particles based on evidence.



Step 1: propose

Old particles: ≈ P(H1, H2 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1}
{H1 : 1, H2 : 2}

Key idea: proposal distribution

For each old particle (h1, h2), sample H3 ∼ p(h3 | h2).

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1, H3 : 1}
{H1 : 1, H2 : 2, H3 : 2}
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• At each stage of the particle filtering, we can think of our set of particles C as approximating a certain distribution.

• Suppose we have a set of particles that approximates the filtering distribution over H1, H2. The first step is to extend each current partial
assignment (particle) from (h1, . . . , hi−1) to (h1, . . . , hi).

• To do this, we simply go through each particle and sample a new value hi using the transition probability p(hi | hi−1).

• We can think of advancing each particle according to the dynamics of the HMM. These extended particles approximate the probability of
H1, H2, H3, but still conditioned on the same evidence.

• In some cases (e.g., the transitions are Gaussian), sampling h3 is very easy compared to enumerating all possible of h3. (Indeed, the advantages
of particle filtering are clearer in continuous state spaces.).



Step 2: weight

Old particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 1)

{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 1, H2 : 2 : H3 : 2}

Key idea: weighting based on evidence

For each old particle (h1, h2, h3), weight it by p(e3 = 2 | h3).

h3 p(e3 = 2 | h3)

0 0

1 1/4

2 1/2

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 1, E3 = 1)

{H1 : 0, H2 : 1 : H3 : 1} (1/4)
{H1 : 1, H2 : 2 : H3 : 2} (1/2)
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• Having generated a set of K candidates, we need to now take into account the new evidence Ei = ei. This is a deterministic step that simply
weights each particle by the probability of generating Ei = ei, which is the emission probability p(ei | hi).

• Intuitively, the proposal was just a guess about where the object will be H3, but we need to fact check this guess.

• In this example, we observed E3 = 2, so we need to weight the two particles by p(e3 = 2 | h3 = 1) = 1/4 and p(e3 = 2 | h3 = 2) = 1/2,
respectively.



Step 3: resample

Old particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 0, H2 : 1 : H3 : 1} (1/4) ⇒ 1/3

{H1 : 1, H2 : 2 : H3 : 2} (1/2) ⇒ 2/3

Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising
areas.

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 1, H2 : 2 : H3 : 2}
{H1 : 1, H2 : 2 : H3 : 2}
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• At this point, we have a set of weighted particles representing the desired filtering distribution.

• However, if some of the weights are small, this could be wasteful. In the extreme case, any particle with zero weight should just be thrown
out.

• The K particles can be viewed as our limited resources for representing the distribution, the resampling step attempts to redistribute these
precious resources to places in the distribution that are more promising.

• To this end, we will normalize the weights to form a distribution over the particles (similar to what we did at the end of beam search). Then
we sample K times from this distribution.

• In this example, we happened to get two occurrences of the second particle, but we might have easily gotten one of each or even two of the
first.



Why sampling?

distribution K with highest weight K sampled from distribution

not representative more representative

Sampling is especially important when there is high uncertainty!
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• You might wonder why we are resampling, leaving the result of the algorithm up to chance.

• To see why resampling can be more favorable than beam search, consider the setting where we start with a set of particles on the left where
the weights are given by the shade of red (darker is more weight). Notice that the weights are all quite similar (i.e., the distribution is close
to the uniform distribution).

• Beam search chooses the K locations with the highest weight, which would clump all the particles near the mode. This is risky, because we
have no support out farther from the center, where there is actually substantial probability.

• However, if we sample from the distribution which is proportional to the weights, then we can hedge our bets and get a more representative
set of particles which cover the space more evenly.

• In cases where the original weights much more skewed towards a few particles, then taking the highest weight particles is fine and perhaps
even slightly better than resampling.



Particle filtering

Algorithm: particle filtering

Initialize C ← [{}]
For each i = 1, . . . , n:

Propose:

C ′ ← {h ∪ {Hi : hi} : h ∈ C, hi ∼ p(hi | hi−1)}
Weight:

Compute weights w(h) = p(ei | hi) for h ∈ C ′

Resample:

C ← K particles drawn independently from w(h)∑
h′∈C w(h′)

[demo: particleFiltering({K:100})]
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• We now present the final particle filtering algorithm, which is structurally similar to beam search. We go through all the variables H1, . . . ,Hn.

• For each candidate h ∈ C, we propose hi according to the transition distribution p(hi | hi−1).

• We then weight this particle using the emission probability w(h) = p(ei | hi).

• Finally, we normalize the weights {w(h) : h ∈ C} and sample K particles independently from this distribution.

• In the demo, we can go through the extend (propose) and prune (weight + resample) steps, ending with a final set of full assignments, which
can be used to approximate the filtering distribution P(H3 | E = e).



Particle filtering: implementation

For filtering questions, can optimize:

• Keep only value of last Hi for each particle

• Store count for each unique particle

{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 1, H2 : 2 : H3 : 2}
{H1 : 1, H2 : 1 : H3 : 2}
{H1 : 1, H2 : 2 : H3 : 2}

1

1

2

2

2

1 (2x)

2 (3x)
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• So far, we have presented a version of particle filtering where each particle at the end is a full assignment to all the variables. This allows us
to approximately answer a variety of different questions based on the induced distribution.

• However, if we’re only interested in filtering questions, then we can perform two optimizations.

• First, in tracking applications, we only care about the last location Hi, and future steps only depend on the value of Hi. Therefore, we often
just store the value of Hi rather than the entire trajectory.

• Second, since we have discrete variables, many particles might have the same value of Hi, so we can just store the counts of each value rather
than storing duplicate values.



Particle filtering demo

[see web version]
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• Now let us visualize particle filtering in a more realistic, interactive object tracking setting.

• Consider an object is moving around in a grid and we are trying to figure out its location Hi ∈ {1, . . . , grid-width} × {1, . . . , grid-height}.

• The transition distribution places a uniform distribution over moving north, moving south, moving east, moving west, or staying put.

• The emission distribution places a uniform distribution over locations Ei that are within 3 steps (both vertically and horizontally) of the actual
position Hi. In the textbox, you can change the emission distribution dynamically (observeFactor).

• When you hit ctrl-enter, you can see the noisy sensor readings (visualized as a yellow dot bouncing around).

• If you increase the number of particles, you can see a red cloud representing where the particles are, where the intensity of a square is
proportional to the number of particles in that square.

• You can now set showTruePosition = true to see the actual Hi that generated Ei. You can see that the cloud is able to track the true
location reasonably well, although there are occasional errors.



Summary

H1 H2 H3

E1 E2 E3

0 2 2

P(H3 | E1 = 0, E2 = 2, E3 = 2)

• Use particles to represent an approximate distribution

Propose (transitions) Weight (emissions) Resample

• Can scale to large number of locations (unlike forward-backward)

• Maintains better particle diversity (compared to beam search)
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• In summary, we have presented particle filtering, an inference algorithm for HMMs that approximately computes filtering questions of the
form: where is the object currently given all the past noisy sensor readings?

• Particle filtering represents distributions over hidden variables with a set of particles. To advance the particles to the next time step, it
proposes new positions based on transition probabilities. It then weights these guesses based on evidence from the emission probabilities.
Finally, it resamples from the normalized weights to redistribute the precious particle resources.

• Compared to the forward-backward algorithm, both beam search and particle filtering can scale up to a large number of locations (assuming
most of them are unlikely). Unlike beam search, however, particle filtering uses randomness to ensure better diversity of the particles.

• Particle filtering is also called sequential Monte Carlo and there are many more sophisticated extensions that I’d encourage to learn about.


