

MDPs: overview

Markov decision process

Definition: Markov decision process-

```
States: the set of states
```

```
s_{\text{start}} \in \text{States: starting state}
```

```
Actions(s): possible actions from state s
```

```
T(s, a, s'): probability of s' if take action a in state s
```

```
Reward(s, a, s'): reward for the transition (s, a, s')
```

```
IsEnd(s): whether at end of game
```

```
0 \leq \gamma \leq 1: discount factor (default: 1)
```

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in \text{States to an action } a \in \text{Actions}(s)$.

Γ	Example:	volcano	crossing-
	s	$\pi(s)$	
	(1,1)	S	
	(2,1)	E	
	(3,1)	Ν	

MDPs: policy evaluation

Discounting

- Characteria -

Path: $s_0, a_1r_1s_1, a_2r_2s_2, \ldots$ (action, reward, new state). The **utility** with discount γ is $u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$

Discount $\gamma = 1$ (save for the future):

[stay, stay, stay, stay]: 4 + 4 + 4 = 16

Discount $\gamma = 0$ (live in the moment):

[stay, stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay, stay]: $4 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 4 = 7.5$

Policy evaluation

Definition: value of a policy-

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Definition: Q-value of a policy-

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .

Policy evaluation

Plan: define recurrences relating value and Q-value

Policy evaluation

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

Algorithm: policy evaluation Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s. For iteration $t = 1, \dots, t_{\mathsf{PE}}$: For each state s: $V_{\pi}^{(t)}(s) \leftarrow \sum_{s'} T(s'|s, \pi(s))[\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]$ $Q^{(t-1)}(s, \pi(s))$

MDPs: value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

The **optimal value** $V_{opt}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\mathsf{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies

Given Q_{opt} , read off the optimal policy:

$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

Value iteration

Time: $O(t_{VI}SAS')$

Summary of algorithms

• Policy evaluation: (MDP, π) $\rightarrow V_{\pi}$

• Value iteration: $MDP \rightarrow (Q_{opt}, \pi_{opt})$

MDPs: reinforcement learning

Unknown transitions and rewards

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States:} \ \mathsf{starting} \ \mathsf{state}$

Actions(s): possible actions from state s

IsEnd(s): whether at end of game $0 \le \gamma \le 1$: discount factor (default: 1)

reinforcement learning!

MDPs: model-based methods

Model-Based Value Iteration

Data: $s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n$

Fig. Key idea: model-based learning Estimate the MDP: T(s, a, s') and Reward(s, a, s')

Transitions:

$$\hat{T}(s, a, s') = \frac{\# \operatorname{times} (s, a, s') \operatorname{occurs}}{\# \operatorname{times} (s, a) \operatorname{occurs}}$$

Rewards:

$$\widehat{\mathsf{Reward}}(s, a, s') = r \text{ in } (s, a, r, s')$$

Model-Based Value Iteration

Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, end]

- Estimates converge to true values (under certain conditions)
- With estimated MDP $(\hat{T}, \widehat{\text{Reward}})$, compute policy using value iteration

Problem

Problem: won't even see (s, a) if $a \neq \pi(s)$ (a = quit)

Solution: need π to explore explicitly (more on this later)

MDPs: model-free methods

From model-based to model-free

$$\hat{Q}_{\mathsf{opt}}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\widehat{\mathsf{Reward}}(s,a,s') + \gamma \hat{V}_{\mathsf{opt}}(s')]$$

All that matters for prediction is (estimate of) $Q_{opt}(s, a)$.

Key idea: model-free learning
Try to estimate
$$Q_{opt}(s, a)$$
 directly.

Model-free Monte Carlo

Data (following policy π):

```
s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n
```

Recall:

 $Q_{\pi}(s, a)$ is expected utility starting at s, first taking action a, and then following policy π Utility:

$$u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \cdots$$

Estimate:

$$\hat{Q}_{\pi}(s,a) = \mathsf{average} \,\, \mathsf{of} \,\, u_t \,\, \mathsf{where} \,\, s_{t-1} = s, a_t = a$$

(and s, a doesn't occur in s_0, \dots, s_{t-2})

Model-free Monte Carlo

Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Q_{π} now, not Q_{opt}

Definition: on-policy versus off-policy-

On-policy: estimate the value of data-generating policy Off-policy: estimate the value of another policy

MDPs: SARSA

Using the reward + Q-value

Current estimate: $\hat{Q}_{\pi}(s, \text{stay}) = 11$ Data (following policy $\pi(s) = \text{stay}$): [in; stay, 4, end] 4 + 0[in; stay, 4, in; stay, 4, end] 4 + 11[in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11**Algorithm: SARSA-**On each (s, a, r, s', a').

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta[\underbrace{r}_{\text{data}} + \gamma \underbrace{\hat{Q}_{\pi}(s',a')}_{\text{data}}]$$

estimate

Model-free Monte Carlo versus SARSA

SARSA uses estimate $\hat{Q}_{\pi}(s, a)$ instead of just raw data u.

 \mathcal{U}

 $r + \hat{Q}_{\pi}(s', a')$

based on one pathbasedunbiasedbiasedlarge variancesmalwait until end to updatecan update

based on estimate biased small variance can update immediately

MDPs: Q-learning

Q-learning

Problem: model-free Monte Carlo and SARSA only estimate Q_{π} , but want Q_{opt} to act optimally

Output	MDP	reinforcement learning
Q_{π}	policy evaluation	model-free Monte Carlo, SARSA
Q_{opt}	value iteration	Q-learning

Q-learning

Bellman optimality equation:

$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')]$$

Off-Policy versus On-Policy

Definition: on-policy versus off-policy-

On-policy: evaluate or improve the data-generating policy Off-policy: evaluate or learn using data from another policy

on-policy off-policy

policy evaluation Monte Carlo SARSA

policy optimization

Q-learning

Reinforcement Learning Algorithms

Algorithm	Estimating	Based on
Model-Based Monte Carlo	\hat{T},\hat{R}	$s_0, a_1, r_1, s_1, \dots$
Model-Free Monte Carlo	\hat{Q}_{π}	u
SARSA	\hat{Q}_{π}	$r + \hat{Q}_{\pi}$
Q-Learning	$\hat{Q}_{\sf opt}$	$r + \hat{Q}_{opt}$