CS221 Problem Workout

Oct 14

1) $[\mathrm{CA}$ session] Problem 1

After finally meeting up, Romeo (R) and Juliet (J) decide to try to catch a goose (G) to keep as a pet. Eventually, they chase it into a 3×3 hedge maze show below. Now they play the following turn-based game:
(a) The Goose moves either Down or Right.
(b) Romeo moves either Up or Right.
(c) Juliet moves either Left or Down.

Participants: Goose (G), Romeo (R), Juliet (J), bread (o)

If the Goose enters the square with bread, it gets a reward 1. If either Romeo or Juliet enters the same square as the Goose, they catch it and the Goose gets a reward of -50 . The game ends when either the Goose has been caught or everyone has moved once. Note that it is possible for the Goose to get both rewards.
Construct a depth one minimax tree for the above situation, with the Goose as the maximizer and Juliet and Romeo as the minimizers. Use up-triangles Δ for max nodes, down-triangles ∇ for min nodes, and square nodes for the leaves. Label each node with its minimax value.
What is the minimax value of the game if Romeo defects and becomes a maximizer?

2) $[\mathrm{CA}$ session] Problem 2

Consider running alpha-beta pruning on the following minimax tree. Which nodes will be pruned (thus not being visited)?

3) [Breakouts] Problem 3

Consider the speed bump problem we did last week:

You're programming a self-driving car that can take you from home (position 1) to school (position n). At each time step, the car has a current position $x \in\{1, \ldots, n\}$ and a current velocity $v \in\{0, \ldots, m\}$. The car starts with $v=0$, and at each time step, the car can either increase the velocity by 1 , decrease it by 1 , or keep it the same; this new velocity is used to advance x to the new position. The velocity is not allowed to exceed the speed limit m nor return to 0 .
In addition, to prevent people from recklessly cruising down Serra Mall, the university has installed speed bumps at a subset of the n locations. The speed bumps are located at $B \subseteq\{1, \ldots, n\}$. The car is not allowed to enter, leave, or pass over a speed bump with velocity more than $k \in\{1, \ldots, m\}$. Your goal is to arrive at position n with velocity 1 in the smallest number of time steps.

Now let's add more information to this problem:

The university wants to remove the old speed bumps and install a single new speed bump at location $b \in\{1, \ldots, n\}$ to maximize the time it takes for the car to go from position 1 to n.
Let $T(\pi, B)$ be the time it takes to get from 1 to n if the car follows policy π if speed bumps B are present. If π violates the speed limit, define $T(\pi, B)=\infty$.
To simplify, assume $n=6$ and $k=1$. Again, there is exactly one speed bump. That is, $B=\{b\}$ with $b \in\{1, \ldots, n\}$.

$x=1$ home	$x=2$	$x=3$	$x=4$	$x=5$	$x=6$ school

Figure: The university will add a speed bump somewhere
(i) [5 points] Compute the worst case driving time, assuming you get to adapt your policy to the university's choice of speed bump location $b: \max _{b} \min _{\pi} T(\pi,\{b\})$. What values of b attain the maximum?
(ii) [5 points] Compute the best possible time assuming that you have to choose your policy before the university chooses the speed bump: $\min _{\pi} \max _{b} T(\pi,\{b\})$. Make sure to explain your reasoning.

