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1) [CA session] Problem 1: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to
your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate.
You decide to prepare candy bags using the following process.

• For each candy bag, you first flip a (biased) coin Y which comes up heads (Y = H)
with probability λ and tails (Y = T) with probability 1− λ.
• If Y comes up heads (Y = H), you make a Healthy bag, where you:

(a) Add one Apple candy with probability p1 or nothing with probability 1− p1;
(b) Add one Banana candy with probability p1 or nothing with probability 1−p1;
(c) Add one Caramel candy with probability 1− p1 or nothing with probability

p1;
(d) Add one Dark-Chocolate candy with probability 1−p1 or nothing with prob-

ability p1.

• If Y comes up tails (Y = T), you make a Tasty bag, where you:

(a) Add one Apple candy with probability p2 or nothing with probability 1− p2;
(b) Add one Banana candy with probability p2 or nothing with probability 1−p2;
(c) Add one Caramel candy with probability 1− p2 or nothing with probability

p2;
(d) Add one Dark-Chocolate candy with probability 1−p2 or nothing with prob-

ability p2.

For example, if p1 = 1 and p2 = 0, you would deterministically generate: Healthy
bags with one Apple and one Banana; and Tasty bags with one Caramel and one
Dark-Chocolate. For general values of p1 and p2, bags can contain anywhere between
0 and 4 pieces of candy.

Denote A,B,C,D random variables indicating whether or not the bag contains candy
of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.
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Figure 1: Bayesian network for a single candy bag.

(a)
(i) Draw the Bayesian network corresponding to process of creating a single bag.

Solution Solution for part (i) is shown in Figure 1.
(ii) What is the probability of generating a Healthy bag containing Apple, Banana,
Caramel, and not Dark-Chocolate? For compactness, we will use the following notation
to denote this possible outcome:

(Healthy, {Apple,Banana,Caramel}).

Solution By definition, we create a Healthy bag with probability λ, and include the
candies with probability p1p1(1− p1)p1, so the result is

λp1p1(1− p1)p1

(iii) What is the probability of generating a bag containing Apple, Banana, Caramel,
and not Dark-Chocolate?

Solution The bag could be Healthy or Tasty. We have computed the probability
for the Healthy case above. For a Tasty one, a similar computation gives

(1− λ)p2p2(1− p2)p2
so the result is:

λp1p1(1− p1)p1 + (1− λ)p2p2(1− p2)p2

(iv) What is the probability that a bag was a Tasty one, given that it contains Apple,
Banana, Caramel, and not Dark-Chocolate?

Solution Using the definition of conditional probability, we get:
(1− λ)p2p2(1− p2)p2

λp1p1(1− p1)p1 + (1− λ)p2p2(1− p2)p2
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(b)

You realize you need to make more candy bags, but you’ve forgotten the probabilities
you used to generate them. So you try to estimate them looking at the 5 bags you’ve
already made:

bag 1 : (Healthy, {Apple,Banana})
bag 2 : (Tasty, {Caramel,Dark-Chocolate})
bag 3 : (Healthy, {Apple,Banana})
bag 4 : (Tasty, {Caramel,Dark-Chocolate})
bag 5 : (Healthy, {Apple,Banana})

Estimate λ, p1, p2 by maximum likelihood.

Solution Out of 5 bags, 3 are Healthy, so λ = 3/5. To estimate p1, we only consider
the 3 healthy bags. For a Healthy bag, the probability of adding Apple,Banana, not
Caramel, and not Dark-Chocolateis (p1)4. For the three bags, the probability becomes
(p1)

12, which is maximized for p1 = 1. Equivalently, to generate 3 Healthy bags, we flip
a (biased) coin of parameter p1 12 times. Since we observe 12 “heads”, the maximum
likelihood estimate is p1 = 1. To generate 2 Tasty bags, we flip a (biased) coin of
parameter p2 8 times. Since we observe 0 “heads”, the maximum likelihood estimate is
p2 = 0.

•
λ = 3/5

•
p1 = 12/12 = 1

•
p2 = 0/8 = 0

Estimate λ, p1, p2 by maximum likelihood, using Laplace smoothing with parameter 1.

Solution We just need to increment the counts in the previous solution by 1.

•
λ = 4/7

•
p1 = 13/(13 + 1)

•
p2 = 1/(1 + 9)
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(c) You find out your little brother had been playing with your candy bags,
and had mixed them up (in a uniformly random way). Now you don’t even know which
ones were Healthy and which ones were Tasty. So you need to re-estimate λ, p1, p2,
but now without knowing whether the bags were Healthy or Tasty.

bag 1 : (? , {Apple,Banana,Caramel})
bag 2 : (? , {Caramel,Dark-Chocolate})
bag 3 : (? , {Apple,Banana,Caramel})
bag 4 : (? , {Caramel,Dark-Chocolate})
bag 5 : (? , {Apple,Banana,Caramel})

You remember the EM algorithm is just what you need. Initialize with λ = 0.5, p1 =
0.5, p2 = 0, and run one step of the EM algorithm.

(i) E-step:

Solution To evaluate P (Y = T | {A,B,C}) we plug in the parameter values in the
formula in (a),(iv), obtaining P (Y = T | {A,B,C}) = 0. To evaluate P (Y = T |
{C,D}) we use a similar formula obtaining

P (Y = T | {C,D}) = (1− λ)(1− p2)4

λ(1− p1)4 + (1− λ)(1− p2)4
=

16

17

The resulting weighted dataset is:

• (Healthy, {A,B,C}), 1× 3

• (Tasty, {A,B,C}), 0
• (Healthy, {C,D}), 1/17× 2

• (Tasty, {C,D}), 16/17× 2

(ii) M-step:

Solution Now we just do counts like in part (b). There are 3 + 2/17 Healthy bags
out of 5. For p1, each (Healthy, {A,B,C}) corresponds to 3 “heads” and 1 ”tail”
(probability p1p1(1−p1)p1). Each (Healthy, {C,D}) corresponds to 4 “tails” ((1−p1)4).
For p2, each (Tasty, {C,D}) corresponds to 4 “tails” ((1− p2)4). The new parameters
are:

λ = (3 + 2/17)/5

p1 = 9/(9 + 3 + 4 ∗ 2/17)
p2 = 0
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(d)

You decide to make candy bags according to a new process. You create the first one as
described above. Then with probability µ, you create a second bag of the same type as
the first one (Healthy or Tasty), and of different type with probability 1−µ. Given this
type, the bag is filled with candy as before. Then with probability µ, you create a third
bag of the same type as the second one (Healthy or Tasty), and of different type with
probability 1−µ. And so on, you repeat the processM times. Denote Yi, Ai, Bi, Ci, Di

the variables at each time step, for i = 0, . . . ,M . Let Xi = (Ai, Bi, Ci, Di).

Now you want to compute:

P(Yi = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0))

exactly for all i = 0, . . . ,M , and you decide to use the forward-backward algorithm.

Suppose you have already computed the marginals:

fi = P(Yi = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0))

for some i ≥ 0. Recall the first step of the algorithm is to compute an intermediate
result proportional to

P(Yi+1 | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

(i) Write an expression that is proportional to

P(Yi+1 = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of fi and the parameters p1, p2, λ, µ.

Solution Emission: When Yi+1 = Healthy, the probability of observing Xi+1 =
(1, 1, 1, 0) is p1p1(1− p1)p1 as in part (a),(ii).
Transition: There are two cases: either Yi = Healthy, in which case we transit to
Yi+1 = Healthy with probability µ, or Yi = Tasty, in which case we transit to Yi+1 =
Healthy with probability 1− µ.

∝ ((1− fi)(1− µ) + fiµ)p1p1(1− p1)p1
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(ii) Write an expression that is proportional to

P(Yi+1 = Tasty | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of fi and the parameters of the model p1, p2, λ, µ. The proportionality constant
should be the same as in (i).

Solution (Similar to the previous question)
Emission: When Yi+1 = Tasty, the probability of observing Xi+1 = (1, 1, 1, 0) is
p2p2(1− p2)p2.
Transition: There are two cases: either Yi = Healthy, in which case we transit to
Yi+1 = Tasty with probability 1 − µ, or Yi = Tasty, in which case we transit to
Yi+1 = Tasty with probability µ.

∝ ((fi)(1− µ) + (1− fi)µ)p2p2(1− p2)p2

(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

P(Yi+1 = Healthy | X0 = (1, 1, 1, 0), . . . , Xi = (1, 1, 1, 0), Xi+1 = (1, 1, 1, 0))

in terms of h, t and the parameters of the model p1, p2, λ, µ.

Solution Since h and t have same proportionality constant, we get the true value of
the probability by normalization:

h/(h+ t)

6


