Logic

CS221 Section

By: Yi Wen

Logic

- Overview
 - Logic-based models
 - Motivation
 - Logical language
- Ingredients of a logic
 - Syntax: defines a set of valid formulas
 - Semantics: for each formula, specify a set of models
 - Inference rules: what new formulas can be added
- Propositional logic
- First-order logic

Semantics

Propositional logic syntax

Propositional symbols (atomic formulas): A, B, C

Logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \wedge g$
- Disjunction: $f \vee g$
- Implication: $f \rightarrow g$
- Biconditional: $f \leftrightarrow g$

Propositional logic semantics

Definition: model

A **model** w in propositional logic is an **assignment** of truth values to propositional symbols.

Definition: interpretation function-

Let f be a formula.

Let w be a model.

An interpretation function $\mathcal{I}(f, w)$ returns:

- true (1) (say that w satisfies f)
- false (0) (say that w does not satisfy f)

First-order logic syntax

Terms (refer to objects):

- Constant symbol (e.g., arithmetic)
- Variable (e.g., x)
- Function of terms (e.g., Sum(3, x))

Formulas (refer to truth values):

- Atomic formulas (atoms): predicate applied to terms (e.g., Knows(x, arithmetic))
- Connectives applied to formulas (e.g., Student $(x) \to \mathsf{Knows}(x,\mathsf{arithmetic})$)
- Quantifiers applied to formulas (e.g., $\forall x \, \mathsf{Student}(x) \to \mathsf{Knows}(x, \mathsf{arithmetic})$)

First-order logic semantics

- Nodes are objects, labeled with constant symbols
- Directed edges are binary predicates, labeled with predicate symbols; unary predicates are additional node labels

Definition: model in first-order logic-

A model w in first-order logic maps:

constant symbols to objects

$$w(\text{alice}) = o_1, w(\text{bob}) = o_2, w(\text{arithmetic}) = o_3$$

predicate symbols to tuples of objects

$$w(\mathsf{Knows}) = \{(o_1, o_3), (o_2, o_3), \dots\}$$

First-order logic: Propositionalization

¬Knowledge base in first-order logic¬

```
Student(alice) ∧ Student(bob)
```

 $\forall x \, \mathsf{Student}(x) \to \mathsf{Person}(x)$

 $\exists x \, \mathsf{Student}(x) \land \mathsf{Creative}(x)$

Knowledge base in propositional logic-

Studentalice \(\) Studentbob

 $(Studentalice \rightarrow Personalice) \land (Studentbob \rightarrow Personbob)$

 $(Studentalice \land Creativealice) \lor (Studentbob \land Creativebob)$

Semantics: models and knowledge base

Definition: models-

Let $\mathcal{M}(f)$ be the set of **models** w for which $\mathcal{I}(f, w) = 1$.

Definition: Knowledge base-

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

$$\mathcal{M}(\mathsf{KB}) = \bigcap_{f \in \mathsf{KB}} \mathcal{M}(f).$$

Intuition: KB specifies constraints on the world. $\mathcal{M}(KB)$ is the set of all worlds satisfying those constraints.

Semantics: entailment, contradiction, contingency

Definition: entailment-

KB entails f (written KB $\models f$) iff $\mathcal{M}(\mathsf{KB}) \subseteq \mathcal{M}(f)$.

Definition: contradiction-

KB contradicts f iff $\mathcal{M}(KB) \cap \mathcal{M}(f) = \emptyset$.

Proposition: contradiction and entailment7

KB contradicts f iff KB entails $\neg f$.

Contingency

Intuition: f adds non-trivial information to KB

$$\emptyset \subsetneq \mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f) \subsetneq \mathcal{M}(\mathsf{KB})$$

Semantics: Ask/Tell

$$\mathsf{Ask}[f] \longrightarrow \mathsf{KB} \longrightarrow ?$$

Ask: Is it raining?

Possible responses:

- Yes: entailment (KB $\models f$)
- No: contradiction (KB $\models \neg f$)
- I don't know: contingent

Tell: It is raining.

Tell[Rain]

Possible responses:

- Already knew that
- Don't believe that
- Learned something new (update KB)

Semantics: Digression - probabilistic generalization

Bayesian network: distribution over assignments (models)

Semantics: satisfiability

Definition: satisfiability-

A knowledge base KB is **satisfiable** if $\mathcal{M}(KB) \neq \emptyset$.

Reduce Ask[f] and Tell[f] to satisfiability:

Semantics: model checking

 $\begin{array}{cccc} \mathsf{propositional} \;\; \mathsf{symbol} & \;\; \Rightarrow & \;\; \mathsf{variable} \\ \\ \mathsf{formula} & \;\; \Rightarrow & \;\; \mathsf{constraint} \\ \\ \mathsf{model} & \;\; \Leftarrow & \;\; \mathsf{assignment} \end{array}$

Definition: model checking-

Input: knowledge base KB

Output: exists satisfying model ($\mathcal{M}(KB) \neq \emptyset$)?

Example: model checking

$$\mathsf{KB} = \{A \vee B, B \leftrightarrow \neg C\}$$

Propositional symbols (CSP variables):

$$\{A, B, C\}$$

CSP:

Consistent assignment (satisfying model):

$${A:1,B:0,C:1}$$

Inference rules

Definition: inference rule-

If f_1, \ldots, f_k, g are formulas, then the following is an **inference rule**:

$$\frac{f_1, \dots, f_k}{g}$$

(premises) (conclusion)

Definition: Modus ponens inference rule7

For any propositional symbols p and q:

$$\frac{p, \quad p \rightarrow q}{a}$$

Inference algorithm

Algorithm: forward inference-

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas $f_1, \ldots, f_k \in KB$. If matching rule $\frac{f_1, \ldots, f_k}{g}$ exists:

Add g to KB.

Example: Modus ponens inference

Starting point:

```
KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery\}
```

Apply modus ponens to Rain and Rain \rightarrow Wet:

```
KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery, Wet\}
```

Apply modus ponens to Wet and Wet \rightarrow Slippery:

 $\mathsf{KB} = \{\mathsf{Rain}, \mathsf{Rain} \to \mathsf{Wet}, \mathsf{Wet} \to \mathsf{Slippery}, \mathsf{Wet}, \mathsf{Slippery}\}$

Converged.

Definition: derivation-

KB derives/proves f (KB $\vdash f$) iff f eventually gets added to KB.

Inference: soundness and completeness

- Soundness: nothing but the truth
- Completeness: whole truth

Definition: soundness-

A set of inference rules Rules is sound if:

$$\{f: \mathsf{KB} \vdash f\} \subseteq \{f: \mathsf{KB} \models f\}$$

Definition: completeness-

A set of inference rules Rules is complete if:

$$\{f: \mathsf{KB} \vdash f\} \supseteq \{f: \mathsf{KB} \models f\}$$

Semantics

Syntax:

Interpretation defines **entailed/true** formulas: $KB \models f$

Inference rules **derive** formulas: $KB \vdash f$